$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data

Neurocomputing, v.275, 2018년, pp.1308 - 1317  

Abdeljaber, Osama (Department of Civil Engineering, Qatar University) ,  Avci, Onur (Department of Civil Engineering, Qatar University) ,  Kiranyaz, Mustafa Serkan (Department of Electrical Engineering, Qatar University) ,  Boashash, Boualem (Department of Electrical Engineering, Qatar University) ,  Sodano, Henry (Department of Aerospace Engineering, University of Michigan) ,  Inman, Daniel J. (Department of Aerospace Engineering, University of Michigan)

Abstract AI-Helper 아이콘AI-Helper

Abstract Structural damage detection has been an interdisciplinary area of interest for various engineering fields. While the available damage detection methods have been in the process of adapting machine learning concepts, most machine learning based methods extract “hand-crafted” fea...

주제어

참고문헌 (55)

  1. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. Brownjohn 2007 Structural health monitoring of civil infrastructure 

  2. Alampalli 2007 Proc. SPIE-Int. Soc. Opt. Eng. Structural identification, damage identification and structural health monitoring 

  3. Struct. Health Monit. Civil Infrastruct. Syst. Catbas 2009 10.1533/9781845696825.1 1-Structural health monitoring: applications and data analysis 

  4. J. Sound Vib. Gul 2011 10.1016/j.jsv.2010.09.024 Structural health monitoring and damage assessment using a novel time series analysis methodology with sensor clustering 

  5. Struct. Health Monit. Balageas 2006 10.1002/9780470612071.ch1 Structural health monitoring, 

  6. J. Dyn. Syst. Meas. Control Sohn 123 706 2001 10.1115/1.1410933 Structural health monitoring using statistical pattern recognition techniques 

  7. Struct. Health Monit. Friswell 2002 10.1177/1475921702001002002 Crack modeling for structural health monitoring 

  8. Struct. Health Monit. Vanik 1998 A Bayesian probabilistic approach to structural health monitoring 

  9. Struct. Health Monit. Stull 2012 10.1177/1475921712451956 On assessing the robustness of structural health monitoring technologies 

  10. J. Civil Struct. Health Monit. Mansouri 5 2015 10.1007/s13349-015-0134-7 Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system 

  11. Mansouri 2015 10.1007/978-3-319-15224-0_5 Conf. Proc. Soc. Exp. Mech. Ser. A comparative assessment of nonlinear state estimation methods for structural health monitoring 

  12. J. Perform. Constr. Facil. Avci 2015 Self-organizing maps for structural damage detection: a novel unsupervised vibration-based algorithm 

  13. Abdeljaber 2016 10.1007/978-3-319-29956-3_5 Conf. Proc. Soc. Exp. Mech. Ser. Quantification of structural damage with self-organizing maps 

  14. J. Archit. Eng Abdeljaber 22 2016 10.1061/(ASCE)AE.1943-5568.0000205 Nonparametric structural damage detection algorithm for ambient vibration response: Utilizing artificial neural networks and self-organizing maps 

  15. Chaabane 2017 Proc. 2016 Seventeenth Int. Conf. Sci. Tech. Autom. Control Comput. Eng. STA 2016 Damage detection using enhanced multivariate statistical process control technique 

  16. Busca 2014 10.1007/978-3-319-04570-2_22 Conf. Proc. Soc. Exp. Mech. Ser. Vision device applied to damage identification in civil engineer structures 

  17. Shock Vib Chun 2015 2015 Bridge damage severity quantification using multipoint acceleration measurement and artificial neural networks 

  18. Struct. Health Monit Figueiredo 10 559 2011 10.1177/1475921710388971 Machine learning algorithms for damage detection under operational and environmental variability 

  19. Adv. Struct. Eng. Dackermann 13 1001 2010 10.1260/1369-4332.13.6.1001 Dynamic-based damage identification using neural network ensembles and damage index method 

  20. Eng. Appl. Artif. Intell. Liu 24 87 2011 10.1016/j.engappai.2010.08.011 Structure damage diagnosis using neural network and feature fusion 

  21. Knowl.-Based Syst. Boashash 106 38 2016 10.1016/j.knosys.2016.05.027 Automatic signal abnormality detection using time-frequency features and machine learning: a newborn EEG seizure case study 

  22. Math. Probl. Eng. Zhou 2014 2014 10.1155/2014/837963 Damage localization of cable-supported bridges using modal frequency data and probabilistic neural network 

  23. Adv. Struct. Eng. Jiang 9 445 2006 10.1260/136943306778812787 Structural damage detection by integrating data fusion and probabilistic neural network 

  24. Struct. Control Health Monit. Wen 14 144 2007 10.1002/stc.116 Unsupervised fuzzy neural networks for damage detection of structures 

  25. J. Comput. Civil Eng. Meruane 30 2015 Online sequential extreme learning machine for vibration-based damage assessment using transmissibility data 

  26. J. Sound Vib. Santos 363 584 2016 10.1016/j.jsv.2015.11.008 Machine learning algorithms for damage detection: Kernel-based approaches 

  27. IEEE Trans. Ind. Electron Ince 63 7067 2016 10.1109/TIE.2016.2582729 Real-time motor fault detection by 1-D convolutional neural networks 

  28. Sci. Rep. Kiranyaz 7 2017 10.1038/s41598-017-09544-z Personalized monitoring and advance warning system for cardiac arrhythmias 

  29. IEEE Trans. Biomed. Eng. Kiranyaz 63 664 2016 10.1109/TBME.2015.2468589 Real-time patient-specific ECG classification by 1-D convolutional neural networks 

  30. Scherer 92 2010 Proc. Twentieth Int. Conf. Artif. Neural Netw. Part III Evaluation of pooling operations in convolutional architectures for object recognition 

  31. 10.1186/s13640-017-0213-2 L. Wiest, Recurrent neural networks-combination of RNN and CNN, convolutional neural networks image video process. (2017). 

  32. Neural Netw Wu 2015 10.1016/j.neunet.2015.07.007 Towards dropout training for convolutional neural networks 

  33. Nips Stutz 2016 2014 Understanding convolutional neural networks 

  34. 10.1145/2951024 Y. Zhang, P. Liang, M.J. Wainwright, Convexified Convolutional Neural Networks, 2016. doi:10.1145/2951024. 

  35. Adv. Neural Inf. Process. Syst. Krizhevsky 1097 2012 Imagenet classification with deep convolutional neural networks 

  36. M. Karpathy, Convolutional neural networks (CNNs/ ConvNets), CS231n Convolutional Neural Networks Vis. Recognit. (2000). 

  37. 10.1109/CVPR.2014.223 A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei, Large-scale video classification with convolutional neural networks, in: Large-Scale Video Classification with Convolutional Neural Networks, 2014. 

  38. A. Deshpande, Understanding convolutional neural networks https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/. (2014). 

  39. Avci 49 2017 Structural Health Monitoring & Damage Detection, Volume 7: Proceedings of the Thirty-Fifth IMAC, A Conference and Exposition on Structural Dynamics. Structural damage detection in real time: implementation of 1D convolutional neural networks for SHM applications 

  40. J. Sound Vib. Abdeljaber 388 154 2017 10.1016/j.jsv.2016.10.043 Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks 

  41. Dyke 2003 Proc. Sixteenth ASCE Eng. Mech. Conf. Experimental phase II of the structural health monitoring benchmark problem 

  42. Neurocomputing Guo 2016 Deep learning for visual understanding: a review 

  43. IEEE Trans. Inf. Forensics Secur. Yu 2017 10.1109/TIFS.2016.2636090 IPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning 

  44. Neurocomputing Tsironi 2016 An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition 

  45. Neurocomput. Int. J. Huang 2016 10.1016/j.neucom.2016.09.018 A unified approach to transfer learning of deep neural networks with applications to speaker adaptation in automatic speech recognition 

  46. IEEE Trans. Ind. Electron. Yu PP 1 2017 Multi-task autoencoder model for recovering human poses 

  47. Hong 2013 Proc. - 2013 IEEE Int. Conf. Syst. Man, Cybern. SMC 2013 Image-based 3D human pose recovery with locality sensitive sparse retrieval 

  48. Signal Process Hong 2016 10.1016/j.sigpro.2015.10.004 Hypergraph regularized autoencoder for image-based 3D human pose recovery 

  49. IEEE Trans. Image Process Hong 2015 10.1109/TIP.2015.2487860 Multimodal deep autoencoder for human pose recovery 

  50. Neurocomputing Aswolinskiy 268 55 2017 10.1016/j.neucom.2016.12.086 Modelling of parametrized processes via regression in the model space of neural networks 

  51. J. Sound Vib. Abdeljaber 363 2016 Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks 

  52. Kiranyaz 2015 Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS Convolutional neural networks for patient-specific ECG classification 

  53. Exp. Tech. Beck 25 49 2001 10.1111/j.1747-1567.2001.tb00026.x A Benchmark problem for structural health monitoring 

  54. MATLAB version 8.1.0.604. Natick, MA, MathWorks. 

  55. A public SHM website. www.structuraldamagedetection.com. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로