$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Improvement of multi-level resistive switching characteristics in solution-processed AlO x -based non-volatile resistive memory using microwave irradiation

Semiconductor science and technology, v.33 no.1, 2018년, pp.015009 -   

Kim, Seung-Tae (Department of Electronic Materials Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea) ,  Cho, Won-Ju (Department of Electronic Materials Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-depos...

참고문헌 (36)

  1. [1] Fan Y-S, Liu P-T and Hsu C-H 2013 Investigation on amorphous InGaZnO based resistive switching memory with low-power, high-speed, high reliability Thin Solid Films 549 54–8 10.1016/j.tsf.2013.09.033 Investigation on amorphous InGaZnO based resistive switching memory with low-power, high-speed, high reliability Fan Y-S, Liu P-T and Hsu C-H Thin Solid Films 0040-6090 549 2013 54 58 

  2. [2] Cho T et al 2001 A dual-mode NAND flash memory: 1 Gb multilevel and high-performance 512 Mb single-level modes IEEE J. Solid-State Circuits 36 1700–6 10.1109/4.962291 A dual-mode NAND flash memory: 1 Gb multilevel and high-performance 512 Mb single-level modes Cho T et al IEEE J. Solid-State Circuits 0018-9200 36 2001 1700 1706 

  3. [3] Hsu C-H, Fan Y-S and Liu P-T 2013 Multilevel resistive switching memory with amorphous InGaZnO-based thin film Appl. Phys. Lett. 102 062905 10.1063/1.4792316 Multilevel resistive switching memory with amorphous InGaZnO-based thin film Hsu C-H, Fan Y-S and Liu P-T Appl. Phys. Lett. 102 062905 2013 

  4. [4] Chien W-C, Lee M-H, Lee F-M, Lin Y-Y, Lung H-L, Hsieh K-Y and Lu C-Y 2011 Multi-level 40 nm WOX resistive memory with excellent reliability 57th IEEE Int. Electron Devices Meeting, Technical Digest pp 31–5 Multi-level 40 nm WOX resistive memory with excellent reliability Chien W-C, Lee M-H, Lee F-M, Lin Y-Y, Lung H-L, Hsieh K-Y and Lu C-Y 57th IEEE Int. Electron Devices Meeting, Technical Digest 2011 31 35 

  5. [5] Wang Y et al 2009 Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications Nanotechnology 21 045202 10.1088/0957-4484/21/4/045202 Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications Wang Y et al Nanotechnology 21 045202 2009 

  6. [6] Waser R, Dittmann R, Staikov G and Szot K 2009 Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges Adv. Mater. 21 2632–63 10.1002/adma.200900375 Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges Waser R, Dittmann R, Staikov G and Szot K Adv. Mater. 21 2009 2632 2663 

  7. [7] Chen L, Xu Y, Sun Q-Q, Zhou P, Wang P-F, Ding S-J and Zhang D W 2010 Atomic-layer-deposited HfLaO-based resistive switching memories with superior performance IEEE Electron Device Lett. 31 1296–8 10.1109/LED.2010.2069081 Atomic-layer-deposited HfLaO-based resistive switching memories with superior performance Chen L, Xu Y, Sun Q-Q, Zhou P, Wang P-F, Ding S-J and Zhang D W IEEE Electron Device Lett. 0741-3106 31 2010 1296 1298 

  8. [8] Shin J et al 2011 TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application J. Appl. Phys. 109 033712 10.1063/1.3544205 TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application Shin J et al J. Appl. Phys. 109 033712 2011 

  9. [9] Wang S-Y, Huang C-W, Lee D-Y, Tseng T-Y and Chang T-C 2010 Multilevel resistive switching in Ti/CuxO/Pt memory devices J. Appl. Phys. 108 114110 10.1063/1.3518514 Multilevel resistive switching in Ti/CuxO/Pt memory devices Wang S-Y, Huang C-W, Lee D-Y, Tseng T-Y and Chang T-C J. Appl. Phys. 108 114110 2010 

  10. [10] Hur J-H, Kim K M, Chang M, Lee S R, Lee D, Lee C B, Lee M-J, Kim Y-B, Kim C-J and Chung U-I 2012 Modeling for multilevel switching in oxide-based bipolar resistive memory Nanotechnology 23 225702 10.1088/0957-4484/23/22/225702 Modeling for multilevel switching in oxide-based bipolar resistive memory Hur J-H, Kim K M, Chang M, Lee S R, Lee D, Lee C B, Lee M-J, Kim Y-B, Kim C-J and Chung U-I Nanotechnology 0957-4484 23 22 225702 2012 

  11. [11] Lee M-J et al 2011 A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures Nat. Mater. 10 625 10.1038/nmat3070 A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures Lee M-J et al Nat. Mater. 10 2011 625 

  12. [12] Yoshida C, Tsunoda K, Noshiro H and Sugiyama Y 2007 High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application Appl. Phys. Lett. 91 223510 10.1063/1.2818691 High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application Yoshida C, Tsunoda K, Noshiro H and Sugiyama Y Appl. Phys. Lett. 91 223510 2007 

  13. [13] Park J, Biju K P, Jung S, Lee W, Lee J, Kim S, Park S, Shin J and Hwang H 2001 Multibit operation of TiOx-based ReRAM by Schottky barrier height engineering IEEE Electron Device Lett. 32 476–8 10.1109/LED.2011.2109032 Multibit operation of TiOx-based ReRAM by Schottky barrier height engineering Park J, Biju K P, Jung S, Lee W, Lee J, Kim S, Park S, Shin J and Hwang H IEEE Electron Device Lett. 0741-3106 32 2001 476 478 

  14. [14] Zhuo V Y-Q, Jiang Y, Li M H, Chua E K, Zhang Z, Pan J S, Zhao R, Shi L P, Chong T C and Robertson J 2013 Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering Appl. Phys. Lett. 102 062106 10.1063/1.4792274 Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering Zhuo V Y-Q, Jiang Y, Li M H, Chua E K, Zhang Z, Pan J S, Zhao R, Shi L P, Chong T C and Robertson J Appl. Phys. Lett. 102 062106 2013 

  15. [15] Nagata T, Haemori M, Yamashita Y, Yoshikawa H, Iwashita Y, Kobayashi K and Chikyow T 2011 Bias application hard x-ray photoelectron spectroscopy study of forming process of Cu/HfO2/Pt resistive random access memory structure Appl. Phys. Lett. 99 223517 10.1063/1.3664781 Bias application hard x-ray photoelectron spectroscopy study of forming process of Cu/HfO2/Pt resistive random access memory structure Nagata T, Haemori M, Yamashita Y, Yoshikawa H, Iwashita Y, Kobayashi K and Chikyow T Appl. Phys. Lett. 99 223517 2011 

  16. [16] Nigo S, Kubota M, Harada Y, Hirayama T, Kato S, Kitazawa H and Kido G 2012 Conduction band caused by oxygen vacancies in aluminum oxide for resistance random access memory J. Appl. Phys. 112 033711 10.1063/1.4745048 Conduction band caused by oxygen vacancies in aluminum oxide for resistance random access memory Nigo S, Kubota M, Harada Y, Hirayama T, Kato S, Kitazawa H and Kido G J. Appl. Phys. 112 033711 2012 

  17. [17] Russo U, Kamalanathan D, Ielmini D, Lacaita A L and Kozicki M N 2009 Study of multilevel programming in programmable metallization cell (PMC) memory IEEE Trans. Electron Devices 56 1040–7 10.1109/TED.2009.2016019 Study of multilevel programming in programmable metallization cell (PMC) memory Russo U, Kamalanathan D, Ielmini D, Lacaita A L and Kozicki M N IEEE Trans. Electron Devices 0018-9383 56 2009 1040 1047 

  18. [18] Tada M, Okamoto K, Sakamoto T, Miyamura M, Banno N and Hada H 2011 Polymer solid-electrolyte switch embedded on CMOS for nonvolatile crossbar switch IEEE Trans. Electron Devices 58 4398–406 10.1109/TED.2011.2169070 Polymer solid-electrolyte switch embedded on CMOS for nonvolatile crossbar switch Tada M, Okamoto K, Sakamoto T, Miyamura M, Banno N and Hada H IEEE Trans. Electron Devices 0018-9383 58 2011 4398 4406 

  19. [19] Lin C-Y, Wu C-Y, Wu C-Y, Hu C and Tseng T-Y 2007 Bistable resistive switching in Al2O3 memory thin films J. Electrochem. Soc. 154 G189–92 10.1149/1.2750450 Bistable resistive switching in Al2O3 memory thin films Lin C-Y, Wu C-Y, Wu C-Y, Hu C and Tseng T-Y J. Electrochem. Soc. 0013-4651 154 2007 G189 G192 

  20. [20] Yeom S-W, Shin S-C, Kim T-Y, Ha H J, Lee Y-H, Shim J W and Ju B-K 2016 Transparent resistive switching memory using aluminum oxide on a flexible substrate Nanotechnology 27 07LT01 10.1088/0957-4484/27/7/07LT01 Transparent resistive switching memory using aluminum oxide on a flexible substrate Yeom S-W, Shin S-C, Kim T-Y, Ha H J, Lee Y-H, Shim J W and Ju B-K Nanotechnology 0957-4484 27 7 07LT01 2016 

  21. [21] Suzuki K and Kato K 2009 Sol-gel synthesis of high-k HfO2 thin films J. Am. Ceram. Soc. 92 S162–4 10.1111/j.1551-2916.2008.02649.x Sol-gel synthesis of high-k HfO2 thin films Suzuki K and Kato K J. Am. Ceram. Soc. 0002-7820 92 2009 S162 S164 

  22. [22] Jung S, Kong J, Song S, Lee K, Lee T, Hwang H and Jeon S 2011 Resistive switching characteristics of solution-processed TiOx for next-generation non-volatile memory application; transparency, flexibility, and nano-scale memory feasibility Microelectron. Eng. 88 1143–7 10.1016/j.mee.2011.03.054 Resistive switching characteristics of solution-processed TiOx for next-generation non-volatile memory application; transparency, flexibility, and nano-scale memory feasibility Jung S, Kong J, Song S, Lee K, Lee T, Hwang H and Jeon S Microelectron. Eng. 0167-9317 88 2011 1143 1147 

  23. [23] Jo K-W and Cho W-J 2014 Improvement in gate bias stress instability of amorphous indium–gallium–zinc oxide thin-film transistors using microwave irradiation Appl. Phys. Lett. 105 213505 10.1063/1.4902867 Improvement in gate bias stress instability of amorphous indium–gallium–zinc oxide thin-film transistors using microwave irradiation Jo K-W and Cho W-J Appl. Phys. Lett. 105 213505 2014 

  24. [24] Hwang Y-H, An H-M and Cho W-J 2014 Performance improvement of the resistive memory properties of InGaZnO thin films by using microwave irradiation Japan. J. Appl. Phys. 53 04EJ04 10.7567/JJAP.53.04EJ04 Performance improvement of the resistive memory properties of InGaZnO thin films by using microwave irradiation Hwang Y-H, An H-M and Cho W-J Japan. J. Appl. Phys. 0021-4922 53 04EJ04 2014 

  25. [25] Xu C, Niu D, Muralimanohar N, Jouppi N P and Xie Y 2013 Understanding the trade-offs in multi-level cell ReRAM memory design 50th Design Automtion Conf. ACM/EDAC/IEEE Technical Digest pp 1–6 Understanding the trade-offs in multi-level cell ReRAM memory design Xu C, Niu D, Muralimanohar N, Jouppi N P and Xie Y 50th Design Automtion Conf. ACM/EDAC/IEEE Technical Digest 2013 1 6 

  26. [26] Yu S, Wu Y and Philip Wong H-S 2011 Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory Appl. Phys. Lett. 98 103514 10.1063/1.3564883 Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory Yu S, Wu Y and Philip Wong H-S Appl. Phys. Lett. 98 103514 2011 

  27. [27] Kim W, Menzel S, Wouters D J, Waser R and Rana V 2016 3 bit multilevel switching by deep reset phenomenon in Pt/W/TaOx/Pt-ReRAM devices IEEE Electron Device Lett. 37 564–7 10.1109/LED.2016.2542879 3 bit multilevel switching by deep reset phenomenon in Pt/W/TaOx/Pt-ReRAM devices Kim W, Menzel S, Wouters D J, Waser R and Rana V IEEE Electron Device Lett. 0741-3106 37 2016 564 567 

  28. [28] Chien W-C et al 2010 Unipolar switching behaviors of RTO WOX RRAM IEEE Electron Device Lett. 31 126–8 10.1109/LED.2009.2037593 Unipolar switching behaviors of RTO WOX RRAM Chien W-C et al IEEE Electron Device Lett. 0741-3106 31 2010 126 128 

  29. [29] Shen S-S et al 2011 Fast-write resistive RAM (RRAM) for embedded applications IEEE Des. Test Comput. 28 64–71 10.1109/MDT.2010.96 Fast-write resistive RAM (RRAM) for embedded applications Shen S-S et al IEEE Des. Test Comput. 0740-7475 28 2011 64 71 

  30. [30] Alexander M R, Thompson G E and Beamson G 2000 Characterization of the oxide/hydroxide surface of aluminium using x-ray photoelectron spectroscopy: a procedure for curve fitting the O 1s core level Surf. Interface Anal. 29 468–77 10.1002/1096-9918(200007)29:7<468::AID-SIA890>3.0.CO;2-V Characterization of the oxide/hydroxide surface of aluminium using x-ray photoelectron spectroscopy: a procedure for curve fitting the O 1s core level Alexander M R, Thompson G E and Beamson G Surf. Interface Anal. 29 2000 468 477 

  31. [31] Peng J, Sun Q, Zhai Z, Yuan J, Huang X, Jin Z, Li K, Wang S, Wang H and Ma W 2013 Low temperature, solution-processed alumina for organic solar cells Nanotechnology 24 484010 10.1088/0957-4484/24/48/484010 Low temperature, solution-processed alumina for organic solar cells Peng J, Sun Q, Zhai Z, Yuan J, Huang X, Jin Z, Li K, Wang S, Wang H and Ma W Nanotechnology 0957-4484 24 48 484010 2013 

  32. [32] Gabriel C, Gabriel S, Grant E H, Halstead B S J and Mingos D M P 1998 Dielectric parameters relevant to microwave dielectric heating Chem. Soc. Rev. 27 213–24 10.1039/a827213z Dielectric parameters relevant to microwave dielectric heating Gabriel C, Gabriel S, Grant E H, Halstead B S J and Mingos D M P Chem. Soc. Rev. 27 1998 213 224 

  33. [33] Kajbafvala A, Ghorbani H, Paravar A, Samberg J-P, Kajbafvala E and Sadrnezhaad S-K 2012 Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods Superlattices Microstruct. 51 512–22 10.1016/j.spmi.2012.01.015 Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods Kajbafvala A, Ghorbani H, Paravar A, Samberg J-P, Kajbafvala E and Sadrnezhaad S-K Superlattices Microstruct. 51 2012 512 522 

  34. [34] Zhao C, Zhao C Z, Werner M, Taylor S and Chalker P 2013 Dielectric relaxation of high-k oxides Nanoscale Res. Lett. 8 456 10.1186/1556-276X-8-456 Dielectric relaxation of high-k oxides Zhao C, Zhao C Z, Werner M, Taylor S and Chalker P Nanoscale Res. Lett. 8 2013 456 

  35. [35] German R-M 1996 Sintering Theory and Practice (New York: Wiley) German R-M Sintering Theory and Practice 1996 

  36. [36] Vandelli L, Padovani A, Larcher L, Broglia G, Ori G, Montorsi M, Bersuker G and Pavan P 2011 Comprehensive physical modeling of forming and switching operations in HfO2 RRAM devices IEEE Int. Electron Devices Meeting pp 17.5.1–4 Comprehensive physical modeling of forming and switching operations in HfO2 RRAM devices Vandelli L, Padovani A, Larcher L, Broglia G, Ori G, Montorsi M, Bersuker G and Pavan P IEEE Int. Electron Devices Meeting 2011 17.5.1–4 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로