$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Resynthesis and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 from spent cathode material of lithium-ion batteries

Vacuum, v.156, 2018년, pp.317 - 324  

Liu, Pengcheng (School of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China) ,  Xiao, Li (School of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China) ,  Tang, Yiwei (Qinyuan Jiazhi Academy of New Materials Research Co., LTD, Qingyuan, Guangdong, 511517, China) ,  Zhu, Yirong (School of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China) ,  Chen, Han (School of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China) ,  Chen, Yifeng (School of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China)

Abstract AI-Helper 아이콘AI-Helper

Abstract LiNi0.5Co0.2Mn0.3O2 (LNCM) was resynthesized by a novel metallurgical approach coupled with solid-state sintering using cathode materials from spent lithium-ion batteries (LIBs) as starting materials. A combination of reduction roasting, two-step leaching, co-precipitation, and solid-state...

주제어

참고문헌 (50)

  1. Waste Manag. Vieceli 71 350 2018 10.1016/j.wasman.2017.09.032 Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite 

  2. Waste Manag. Barik 51 222 2016 10.1016/j.wasman.2015.11.004 An innovative approach to recover the metal values from spent lithium-ion batteries 

  3. J. Power Sources Contestabile 92 1-2 65 2001 10.1016/S0378-7753(00)00523-1 A laboratory-scale lithium-ion battery recycling process 

  4. Xianlai 1 2012 IEEE International Symposium on (2012) Prediction of various discarded lithium batteries in China, Sustainable Systems and Technology (ISSST) 

  5. Waste Manag. Li 52 221 2016 10.1016/j.wasman.2016.03.011 Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries 

  6. J. Clean. Prod. Barik 147 37 2017 10.1016/j.jclepro.2017.01.095 Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: laboratory and pilot scale study 

  7. ACS Sustain. Chem. Eng. Lv 6 2 1504 2018 10.1021/acssuschemeng.7b03811 A critical review and analysis on the recycling of spent lithium-ion batteries 

  8. Renew. Sustain. Energy Rev. Ordonez 60 195 2016 10.1016/j.rser.2015.12.363 Processes and technologies for the recycling and recovery of spent lithium-ion batteries 

  9. ACS Sustain. Chem. Eng. Yang 5 11 9972 2017 10.1021/acssuschemeng.7b01914 A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation 

  10. J. Power Sources Li 282 544 2015 10.1016/j.jpowsour.2015.02.073 Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries 

  11. J. Power Sources Li 377 70 2018 10.1016/j.jpowsour.2017.12.006 Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study 

  12. Waste Manag. Guo 51 227 2016 10.1016/j.wasman.2015.11.036 Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl) 

  13. Waste Manag. Yang 64 219 2017 10.1016/j.wasman.2017.03.018 Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes 

  14. J. Ind. Eng. Chem. Meshram 43 117 2016 10.1016/j.jiec.2016.07.056 Acid baking of spent lithium ion batteries for selective recovery of major metals: a two-step process 

  15. Waste Manag. Res. Sun 36 2 113 2018 10.1177/0734242X17744273 Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: leaching and kinetics aspect 

  16. ACS Sustain. Chem. Eng. He 5 1 714 2016 10.1021/acssuschemeng.6b02056 Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l-tartaric acid as a leachant 

  17. Waste Manag. Pant 60 689 2017 10.1016/j.wasman.2016.09.039 Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries 

  18. Waste Manag. Li 71 362 2018 10.1016/j.wasman.2017.10.028 Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching 

  19. ACS Sustain. Chem. Eng. Li 5 6 5224 2017 10.1021/acssuschemeng.7b00571 Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system 

  20. Waste Manag. Zheng 60 680 2017 10.1016/j.wasman.2016.12.007 Spent lithium-ion battery recycling - reductive ammonia leaching of metals from cathode scrap by sodium sulphite 

  21. J. Hazard Mater. Ku 313 138 2016 10.1016/j.jhazmat.2016.03.062 Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching 

  22. Environ. Sci. Technol. Sun 49 13 7981 2015 10.1021/acs.est.5b01023 A cleaner process for selective recovery of valuable metals from electronic waste of complex mixtures of end-of-life electronic products 

  23. Waste Manag. He 64 171 2017 10.1016/j.wasman.2017.02.011 Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries 

  24. J. Power Sources Huang 325 555 2016 10.1016/j.jpowsour.2016.06.072 A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process 

  25. Waste Manag. Meng 64 214 2017 10.1016/j.wasman.2017.03.017 Use of glucose as reductant to recover Co from spent lithium ions batteries 

  26. J. Hazard Mater. Li 302 97 2016 10.1016/j.jhazmat.2015.09.050 Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries 

  27. J. Power Sources Hu 351 192 2017 10.1016/j.jpowsour.2017.03.093 A promising approach for the recovery of high value-added metals from spent lithium-ion batteries 

  28. ACS Sustain. Chem. Eng. Wang 5 12 11489 2017 10.1021/acssuschemeng.7b02700 Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system 

  29. RSC Adv. Yao 5 55 44107 2015 10.1039/C4RA16390G A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries 

  30. J. Power Sources Hou 265 174 2014 10.1016/j.jpowsour.2014.04.107 Design, synthesis, and performances of double-shelled LiNi0.5Co0.2Mn0.3O2 as cathode for long-life and safe Li-ion battery 

  31. Solid State Ionics Du 279 11 2015 10.1016/j.ssi.2015.07.006 Improving the electrochemical properties of high-energy cathode material LiNi0.5Co0.2Mn0.3O2 by Zr doping and sintering in oxygen 

  32. Electrochim. Acta Zhang 232 80 2017 10.1016/j.electacta.2017.02.064 A facile approach to enhance high-cutoff voltage cycle stability of LiNi0.5Co0.2Mn0.3O2 cathode materials using lithium titanium oxide 

  33. Hydrometallurgy Yang 165 358 2016 10.1016/j.hydromet.2015.11.015 Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps 

  34. J. Hazard Mater. Weng 246-247 163 2013 10.1016/j.jhazmat.2012.12.028 Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)(1-x)Mgx]O2 prepared from spent lithium ion batteries 

  35. Electrochim. Acta Zhang 52 25 7337 2007 10.1016/j.electacta.2007.06.015 Characterization of high tap density Li[Ni1/3Co1/3Mn1/3]O2 cathode material synthesized via hydroxide co-precipitation 

  36. Chem. Mater. van Bommel 21 8 1500 2009 10.1021/cm803144d Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia 

  37. J. Alloy. Comp. Wang 558 172 2013 10.1016/j.jallcom.2013.01.091 The structural mechanism of the improved electrochemical performances resulted from sintering atmosphere for LiNi0.5Co0.2Mn0.3O2 cathode material 

  38. Electrochim. Acta Ohzuku 38 9 1159 1993 10.1016/0013-4686(93)80046-3 Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells 

  39. Electrochim. Acta Lanz 130 206 2014 10.1016/j.electacta.2014.03.004 Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, Mn) 

  40. J. Power Sources Borner 335 45 2016 10.1016/j.jpowsour.2016.09.071 Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes 

  41. J. Power Sources Chen 363 168 2017 10.1016/j.jpowsour.2017.07.087 The high-temperature and high-humidity storage behaviors and electrochemical degradation mechanism of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries 

  42. Electrochim. Acta Woo 54 15 3851 2009 10.1016/j.electacta.2009.01.048 Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution 

  43. Chem. Mater. Luo 22 3 1164 2010 10.1021/cm902593n Synthesis, characterization, and thermal stability of LiNi1/3Mn1/3Co1/3?zMgzO2, LiNi1/3?zMn1/3Co1/3MgzO2, and LiNi1/3Mn1/3?zCo1/3MgzO2† 

  44. Electrochim. Acta Li 77 89 2012 10.1016/j.electacta.2012.05.076 Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8?xCo0.1Mn0.1CrxO2 

  45. Dalton Trans. Qin 45 23 9669 2016 10.1039/C6DT01764A Improvement of electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode active material by ultrathin TiO2 coating 

  46. J. Power Sources Yang 272 144 2014 10.1016/j.jpowsour.2014.08.052 Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries 

  47. J. Electrochem. Soc. Wang 151 6 A914 2004 10.1149/1.1740781 Electrochemical characterization of positive electrode material LiNi1/3Co1/3Mn1/3O2 and compatibility with electrolyte for lithium-ion batteries 

  48. Vacuum Gao 112 1 2015 10.1016/j.vacuum.2014.10.017 Electrochemical property studies of carbon nanotube films fabricated by CVD method as anode materials for lithium-ion battery applications 

  49. Vacuum Peng 120 121 2015 10.1016/j.vacuum.2015.07.001 Electrochemical performance of spinel LiAlxMn2?xO4 prepared rapidly by glucose-assisted solid-state combustion synthesis 

  50. Vacuum Strafela 131 240 2016 10.1016/j.vacuum.2016.06.017 Influence of substrate surface roughness on microstructural and electrical properties of Lithium-rich Li-Ni-Mn-Co-O thin film cathodes 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로