$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Fenbendazole acts as a moderate microtubule destabilizing agent and causes cancer cell death by modulating multiple cellular pathways 원문보기

Scientific reports, v.8, 2018년, pp.11926 -   

Dogra, Nilambra (National Centre for Human Genome Studies and Research, Panjab University, Sector-14, Chandigarh, 160014 India) ,  Kumar, Ashok (National Centre for Human Genome Studies and Research, Panjab University, Sector-14, Chandigarh, 160014 India) ,  Mukhopadhyay, Tapas (National Centre for Human Genome Studies and Research, Panjab University, Sector-14, Chandigarh, 160014 India)

Abstract AI-Helper 아이콘AI-Helper

Drugs that are already clinically approved or experimentally tested for conditions other than cancer, but are found to possess previously unrecognized cytotoxicity towards malignant cells, may serve as fitting anti-cancer candidates. Methyl N-(6-phenylsulfanyl-1H benzimidazol-2-yl) carbamate [Fenben...

참고문헌 (63)

  1. 1. Jordan MA Wilson L Microtubules as a target for anticancer drugs Nat Rev Cancer 2004 4 253 265 10.1038/nrc1317 15057285 

  2. 2. Hamel E Antimitotic natural products and their interactions with tubulin Med Res Rev 1996 16 207 231 10.1002/(SICI)1098-1128(199603)16:2 3.0.CO;2-4 8656780 

  3. 3. Hamel E Interactions of antimitotic peptides and depsipeptides with tubulin Biopolymers 2002 66 142 160 10.1002/bip.10255 12385035 

  4. 4. Jackson JR Patrick DR Dar MM Huang PS Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 2007 7 107 117 10.1038/nrc2049 17251917 

  5. 5. Mukhtar E Adhami VM Mukhtar H Targeting microtubules by natural agents for cancer therapy Mol Cancer Ther 2014 13 275 284 10.1158/1535-7163.MCT-13-0791 24435445 

  6. 6. Jordan MA Mechanism of action of antitumor drugs that interact with microtubules and tubulin Curr Med Chem Anticancer Agents 2002 2 1 17 10.2174/1568011023354290 12678749 

  7. 7. Villar D Cray C Zaias J Altman NH Biologic effects of fenbendazole in rats and mice: a review J Am Assoc Lab Anim Sci 2007 46 8 15 17994667 

  8. 8. Muser RK Paul JW Safety of fenbendazole use in cattle Mod Vet Pract 1984 65 371 374 6738510 

  9. 9. Schwartz RD Donoghue AR Baggs RB Clark T Partington C Evaluation of the safety of fenbendazole in cats Am J Vet Res 2000 61 330 332 10.2460/ajvr.2000.61.330 10714528 

  10. 10. Hayes RH Oehme FW Leipold H Safety of fenbendazole in swine Am J Vet Res 1983 44 1112 1116 6870016 

  11. 11. Hayes RH Oehme FW Leipold H Toxicity investigation of fenbendazole, an anthelmintic of swine Am J Vet Res 1983 44 1108 1111 6870015 

  12. 12. Hinz E [Fenbendazole therapy of experimental larval echinococcosis. I. The effect of fenbendazole on worm burden and protoscolex development of Echinococcus multilocularis (author’s transl)] Zentralbl Bakteriol Orig A 1978 240 542 548 696062 

  13. 13. Sams-Dodd F Target-based drug discovery: is something wrong? Drug Discov Today 2005 10 139 147 10.1016/S1359-6446(04)03316-1 15718163 

  14. 14. Pao W Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain PLoS Med 2005 2 e73 10.1371/journal.pmed.0020073 15737014 

  15. 15. Bean J MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib Proc Natl Acad Sci USA 2007 104 20932 20937 10.1073/pnas.0710370104 18093943 

  16. 16. Laclette JP Guerra G Zetina C Inhibition of tubulin polymerization by mebendazole Biochem Biophys Res Commun 1980 92 417 423 10.1016/0006-291X(80)90349-6 7356473 

  17. 17. Gull K Dawson PJ Davis C Byard EH Microtubules as target organelles for benzimidazole anthelmintic chemotherapy Biochem Soc Trans 1987 15 59 60 10.1042/bst0150059 3556740 

  18. 18. Lacey E Watson TR Structure-activity relationships of benzimidazole carbamates as inhibitors of mammalian tubulin, in vitro Biochem Pharmacol 1985 34 1073 1077 10.1016/0006-2952(85)90611-2 3985991 

  19. 19. Barbuti AM Chen ZS Paclitaxel Through the Ages of Anticancer Therapy: Exploring Its Role in Chemoresistance and Radiation Therapy Cancers (Basel) 2015 7 2360 2371 10.3390/cancers7040897 26633515 

  20. 20. Yusuf RZ Duan Z Lamendola DE Penson RT Seiden MV Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation Curr Cancer Drug Targets 2003 3 1 19 10.2174/1568009033333754 12570657 

  21. 21. Mozzetti S Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients Clin Cancer Res 2005 11 298 305 15671559 

  22. 22. Dumontet C Jordan MA Microtubule-binding agents: a dynamic field of cancer therapeutics Nat Rev Drug Discov 2010 9 790 803 10.1038/nrd3253 20885410 

  23. 23. Seve P Dumontet C Is class III beta-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol 2008 9 168 175 10.1016/S1470-2045(08)70029-9 18237851 

  24. 24. Stengel C Class III beta-tubulin expression and in vitro resistance to microtubule targeting agents Br J Cancer 2010 102 316 324 10.1038/sj.bjc.6605489 20029418 

  25. 25. Lu Y Chen J Xiao M Li W Miller DD An overview of tubulin inhibitors that interact with the colchicine binding site Pharm Res 2012 29 2943 2971 10.1007/s11095-012-0828-z 22814904 

  26. 26. Wu X Wang Q Li W Recent Advances in Heterocyclic Tubulin Inhibitors Targeting the Colchicine Binding Site Anticancer Agents Med Chem 2016 16 1325 1338 10.2174/1871520616666160219161921 26899186 

  27. 27. Zhou J Giannakakou P Targeting microtubules for cancer chemotherapy Curr Med Chem Anticancer Agents 2005 5 65 71 10.2174/1568011053352569 15720262 

  28. 28. Teodori E Dei S Martelli C Scapecchi S Gualtieri F The functions and structure of ABC transporters: implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance (MDR) Curr Drug Targets 2006 7 893 909 10.2174/138945006777709520 16842220 

  29. 29. Kartner N Riordan JR Ling V Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines Science 1983 221 1285 1288 10.1126/science.6137059 6137059 

  30. 30. Gottesman MM Fojo T Bates SE Multidrug resistance in cancer: role of ATP-dependent transporters Nat Rev Cancer 2002 2 48 58 10.1038/nrc706 11902585 

  31. 31. Ford JM Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitisers Eur J Cancer 1996 32A 991 1001 10.1016/0959-8049(96)00047-0 8763340 

  32. 32. van Zuylen L Nooter K Sparreboom A Verweij J Development of multidrug-resistance convertors: sense or nonsense? Invest New Drugs 2000 18 205 220 10.1023/A:1006487003814 10958589 

  33. 33. Jouan, E. et al . Evaluation of P-Glycoprotein Inhibitory Potential Using a Rhodamine 123 Accumulation Assay. Pharmaceutics 8 , 10.3390/pharmaceutics8020012 (2016). 

  34. 34. Clute P Pines J Temporal and spatial control of cyclin B1 destruction in metaphase Nat Cell Biol 1999 1 82 87 10.1038/10049 10559878 

  35. 35. Dogra, N. & Mukhopadhyay, T. Impairment of the ubiquitin-proteasome pathway by methyl N-(6-phenylsulfanyl-1H-benzimidazol-2-yl)carbamate leads to a potent cytotoxic effect in tumor cells: a novel antiproliferative agent with a potential therapeutic implication. J Biol Chem 287 , 30625-30640, 10.1074/jbc.M111.324228. 

  36. 36. Castedo M Cell death by mitotic catastrophe: a molecular definition Oncogene 2004 23 2825 2837 10.1038/sj.onc.1207528 15077146 

  37. 37. Mansilla S Priebe W & Portugal, J. Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms Cell Cycle 2006 5 53 60 10.4161/cc.5.1.2267 16319532 

  38. 38. Giustiniani J Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53 Cell Signal 2009 21 529 539 10.1016/j.cellsig.2008.12.004 19136058 

  39. 39. Giannakakou P Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics Proc Natl Acad Sci USA 2002 99 10855 10860 10.1073/pnas.132275599 12145320 

  40. 40. Marchenko ND Wolff S Erster S Becker K Moll UM Monoubiquitylation promotes mitochondrial p53 translocation EMBO J 2007 26 923 934 10.1038/sj.emboj.7601560 17268548 

  41. 41. Jasra N Sanyal SN Khera S Effect of thiabendazole and fenbendazole on glucose uptake and carbohydrate metabolism in Trichuris globulosa Vet Parasitol 1990 35 201 209 10.1016/0304-4017(90)90055-G 2343538 

  42. 42. Selak MA Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase Cancer Cell 2005 7 77 85 10.1016/j.ccr.2004.11.022 15652751 

  43. 43. Loffler M Becker C Wegerle E Schuster G Catalytic enzyme histochemistry and biochemical analysis of dihydroorotate dehydrogenase/oxidase and succinate dehydrogenase in mammalian tissues, cells and mitochondria Histochem Cell Biol 1996 105 119 128 10.1007/BF01696151 8852433 

  44. 44. Chou TC Talalay P Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors Adv Enzyme Regul 1984 22 27 55 10.1016/0065-2571(84)90007-4 6382953 

  45. 45. Shen L Cell death by bortezomib-induced mitotic catastrophe in natural killer lymphoma cells Mol Cancer Ther 2008 7 3807 3815 10.1158/1535-7163.MCT-08-0641 19074855 

  46. 46. Aft RL Zhang FW Gius D Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death Br J Cancer 2002 87 805 812 10.1038/sj.bjc.6600547 12232767 

  47. 47. Vander Heiden MG Cantley LC Thompson CB Understanding the Warburg effect: the metabolic requirements of cell proliferation Science 2009 324 1029 1033 10.1126/science.1160809 19460998 

  48. 48. Mathupala SP Ko YH Pedersen PL Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy Semin Cancer Biol 2009 19 17 24 10.1016/j.semcancer.2008.11.006 19101634 

  49. 49. Maldonado, E. N., Patnaik, J., Mullins, M. R. & Lemasters, J. J. Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res 70 , 10192-10201, 10.1158/0008-5472.CAN-10-2429. 

  50. 50. Schwartzenberg-Bar-Yoseph F Armoni M Karnieli E The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression Cancer Res 2004 64 2627 2633 10.1158/0008-5472.CAN-03-0846 15059920 

  51. 51. Fletcher LM Welsh GI Oatey PB Tavare JM Role for the microtubule cytoskeleton in GLUT4 vesicle trafficking and in the regulation of insulin-stimulated glucose uptake Biochem J 2000 352 Pt 2 267 276 10.1042/bj3520267 11085918 

  52. 52. Mathupala SP Ko YH Pedersen PL Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria Oncogene 2006 25 4777 4786 10.1038/sj.onc.1209603 16892090 

  53. 53. Liu Y Proline oxidase functions as a mitochondrial tumor suppressor in human cancers Cancer Res 2009 69 6414 6422 10.1158/0008-5472.CAN-09-1223 19654292 

  54. 54. Polyak K Xia Y Zweier JL Kinzler KW Vogelstein B A model for p53-induced apoptosis Nature 1997 389 300 305 10.1038/38525 9305847 

  55. 55. Maddocks, O. D. & Vousden, K. H. Metabolic regulation by p53. J Mol Med (Berl) 89 , 237–245, 10.1007/s00109-011-0735-5. 

  56. 56. Matoba S p53 regulates mitochondrial respiration Science 2006 312 1650 1653 10.1126/science.1126863 16728594 

  57. 57. Kawauchi K Araki K Tobiume K Tanaka N p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation Nat Cell Biol 2008 10 611 618 10.1038/ncb1724 18391940 

  58. 58. Li, T. et al . Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149 , 1269-1283, 10.1016/j.cell.2012.04.026. 

  59. 59. Hu, W. et al . Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 107 , 7455-7460, 10.1073/pnas.1001006107. 

  60. 60. Legault J Microtubule disruption induced in vivo by alkylation of beta-tubulin by 1-aryl-3-(2-chloroethyl)ureas, a novel class of soft alkylating agents Cancer Res 2000 60 985 992 10706114 

  61. 61. Beyer CF TTI-237: a novel microtubule-active compound with in vivo antitumor activity Cancer Res 2008 68 2292 2300 10.1158/0008-5472.CAN-07-1420 18381436 

  62. 62. Bradford MM A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem 1976 72 248 254 10.1016/0003-2697(76)90527-3 942051 

  63. 63. Darrow, R. A. & Colowick, S. P. Vol. V (1962). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로