$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Integrating Drone Imagery into High Resolution Satellite Remote Sensing Assessments of Estuarine Environments 원문보기

Remote sensing, v.10 no.8, 2018년, pp.1257 -   

Gray, Patrick C. (Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, 135 Duke Marine Lab Rd, Beaufort, NC 28516, USA) ,  Ridge, Justin T. (Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, 135 Duke Marine Lab Rd, Beaufort, NC 28516, USA) ,  Poulin, Sarah K. (Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, 135 Duke Marine Lab Rd, Beaufort, NC 28516, USA) ,  Seymour, Alexander C. (Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, 135 Duke Marine Lab Rd, Beaufort, NC 28516, USA) ,  Schwantes, Amanda M. (Nicholas School of the Environment, Duke University, Box 90328, Durham, NC 27708, USA) ,  Swenson, Jennifer J. (Nicholas School of the Environment, Duke University, Box 90328, Durham, NC 27708, USA) ,  Johnston, David W. (Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, 135 Duke Marine Lab Rd, Beaufort, NC 28516,)

Abstract AI-Helper 아이콘AI-Helper

Very high-resolution satellite imagery (≤5 m resolution) has become available on a spatial and temporal scale appropriate for dynamic wetland management and conservation across large areas. Estuarine wetlands have the potential to be mapped at a detailed habitat scale with a frequency that allows...

참고문헌 (72)

  1. Barbier The value of estuarine and coastal ecosystem services Ecol. Monogr. 2011 10.1890/10-1510.1 81 169 

  2. Kirwan Overestimation of marsh vulnerability to sea level rise Nat. Climat. Change. 2016 10.1038/nclimate2909 6 253 

  3. Spalding The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards Ocean Coast Manag. 2014 10.1016/j.ocecoaman.2013.09.007 90 50 

  4. Kirwan Limits on the adaptability of coastal marshes to rising sea level Geophys Res Lett. 2010 10.1029/2010GL045489 37 1 

  5. Mitchell Changes to processes in estuaries and coastal waters due to intense multiple pressures-An introduction and synthesis Estuar. Coast Shelf Sci. 2015 10.1016/j.ecss.2014.12.027 156 1 

  6. Raposa Vegetation Dynamics in Rhode Island Salt Marshes During a Period of Accelerating Sea Level Rise and Extreme Sea Level Events Estuar. Coast . 2017 10.1007/s12237-015-0018-4 40 640 

  7. Klemas Remote Sensing Techniques for Studying Coastal Ecosystems: An Overview J. Coast Res. 2011 27 2 

  8. Adam Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review Wetl. Ecol. Manag. 2010 10.1007/s11273-009-9169-z 18 281 

  9. Dronova Object-Based Image Analysis in Wetland Research: A Review Remote Sens. 2015 10.3390/rs70506380 7 6380 

  10. McCarthy Habitat Mapping and Change Assessment of Coastal Environments: An Examination of WorldView-2, QuickBird, and IKONOS Satellite Imagery and Airborne LiDAR for Mapping Barrier Island Habitats ISPRS Int. J. Geo-Inf. 2014 10.3390/ijgi3010297 3 297 

  11. Rosa Hyperspectral remote sensing of wild oyster reefs Estuar. Coast Shelf Sci. 2016 10.1016/j.ecss.2016.01.039 172 1 

  12. Heenkenda Mangrove species identification: Comparing WorldView-2 with aerial photographs Remote Sens. 2014 10.3390/rs6076064 6 6064 

  13. Laba Use of textural measurements to map invasive wetland plants in the Hudson River National Estuarine Research Reserve with IKONOS satellite imagery Remote Sens. Environ. 2010 10.1016/j.rse.2009.12.002 114 876 

  14. Henderson Radar detection of wetland ecosystems: A review Int. J. Remote Sens. 2008 10.1080/01431160801958405 29 5809 

  15. 10.3390/s17040777 Guo, M., Li, J., Sheng, C., Xu, J., and Wu, L. (2017). A review of wetland remote sensing. Sensors, 17. 

  16. 10.3390/rs8010070 Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M.R., Kuemmerle, T., Meyfroidt, P., and Mitchard, E.T.A. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens., 8. 

  17. 10.3390/rs8090718 Halls, J., and Costin, K. (2016). Submerged and emergent land cover and bathymetric mapping of estuarine habitats using worldView-2 and liDAR imagery. Remote Sens., 8. 

  18. Kalacska Structure from motion will revolutionize analyses of tidal wetland landscapes Remote Sens. Environ. 2017 10.1016/j.rse.2017.06.023 199 14 

  19. Wan Monitoring the invasion of Spartina alterniflora using very high resolution unmanned aerial vehicle imagery in Beihai, Guangxi (China) Sci. World J. 2014 10.1155/2014/638296 2014 14 

  20. Durban Photogrammetry of killer whales using a small hexacopter launched at sea J. Unmanned Veh. Syst. 2015 3 1 

  21. Seymour Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery Sci. Rep. 2017 10.1038/srep45127 7 45127 

  22. 10.1038/s41598-017-17719-x Sykora-Bodie, S.T., Bezy, V., Johnston, D.W., Newton, E., and Lohmann, K.J. (2017). Quantifying Nearshore Sea Turtle Densities: Applications of Unmanned Aerial Systems for Population Assessments. Sci. Rep., 7. 

  23. Mancini Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments Remote Sens. 2013 10.3390/rs5126880 5 6880 

  24. 10.2112/JCOASTRES-D-17-00088.1 Seymour, A., Ridge, J., Rodriguez, A., Newton, E., Dale, J., and Johnston, D. (2017). Deploying Fixed Wing Unoccupied Aerial Systems (UAS) for Coastal Morphology Assessment and Management. J. Coast Res., 34. 

  25. Elarab Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture Int. J. Appl. Earth Obs. Geoinf. 2015 43 32 

  26. Casella Study of wave runup using numerical models and low-altitude aerial photogrammetry: A tool for coastal management Estuar. Coast Shelf Sci. 2014 10.1016/j.ecss.2014.08.012 149 160 

  27. 10.1029/2004GL020336 Inoue, J., and Curry, J.A. (2004). Application of Aerosondes to high-resolution observations of sea surface temperature over Barrow Canyon. Geophys. Res. Lett., 31. 

  28. Corrigan Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles Atmos. Chem. Phys. 2008 10.5194/acp-8-737-2008 8 737 

  29. (2018, February 06). Standard Operating Procedures Mapping Land Use and Habitat Change in the National Estuarine Research Reserve System, Available online: https://coast.noaa.gov/data/docs/nerrs/Standard_Operating_ Procedures_Mapping_Land_Use_and_Habitat_Change_in_the_NERRS.pdf. 

  30. NCNERR (2018, February 01). North Carolina National Estuarine Research Reserve Management Plan 2009-2014, Available online: https://coast.noaa.gov/data/docs/nerrs/Reserves_NOC_MgmtPlan.pdf. 

  31. Pilkey Global Distribution and Geomorphology of Fetch-Limited Barrier Islands J. Coast Res. 2009 10.2112/08-1023.1 254 819 

  32. Kutcher A Recommendation for a Comprehensive Habitat and Land Use Classification System for the National Estuarine Research Reserve System Environ. Heal. 2005 19 1 

  33. (2017, December 20). Classification of Wetlands and Deepwater Habitats of the United States, Available online: https://www.fws.gov/wetlands/Documents/Classification-of-Wetlands-and-Deepwater-Habitats-of-the-United-States.pdf. 

  34. 10.3133/pp964 Anderson, J.R., Hardy, E.E., Roach, J.T., Witmer, R.E., and Peck, D.L. (1976). A Land Use And Land Cover Classification System for Use With Remote Sensor Data. 

  35. NOAA Tides and Currents (2018, February 01). NOAA Tide Predictions, Available online: http://tidesandcurrents.noaa.gov/. 

  36. Carle Mapping freshwater marsh species distributions using WorldView-2 high-resolution multispectral satellite imagery Int. J. Remote Sens. 2014 10.1080/01431161.2014.919685 35 4698 

  37. McCarthy Enabling efficient, large-scale high-spatial resolution wetland mapping using satellites Remote Sens. Environ. 2018 10.1016/j.rse.2018.02.021 208 189 

  38. DigitalGlobe (2017, November 08). WorldView-3 Features, Benefits Design and specifications. Available online: https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/95/DG2017_WorldView-3_DS.pdf. 

  39. Schuster Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data Int. J. Remote Sens. 2012 10.1080/01431161.2012.666812 33 5583 

  40. Gabrielsen Using a multiscale, probabilistic approach to identify spatial-temporal wetland gradients Remote Sens. Environ. 2016 10.1016/j.rse.2016.07.034 184 522 

  41. (2017, October 22). Planet Application Program Interface: In Space for Life on Earth. Available online: https://www.planet.com/docs/citations/. 

  42. Office for Coastal Management (2017, November 17). NOAA Post-Sandy Topobathymetric LiDAR: Void DEMs South Carolina to New York, Available online: https://inport.nmfs.noaa.gov/inport/item/48367. 

  43. North Carolina Department of Environmental Quality D of CM (2018, January 21). N.C. Coastal Reserve and National Estuarine Research Reserve: Habitat Mapping and Change. Available online: http://portal.ncdenr.org/%0Aweb/crp/habitat-mapping. 

  44. Song Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001 10.1016/S0034-4257(00)00169-3 75 230 

  45. Lin Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery Inf. Process Agric. 2015 2 25 

  46. Tucker Red and photographic infrared linear combinations for monitoring vegetation Remote Sens. Environ. 1979 10.1016/0034-4257(79)90013-0 8 127 

  47. Lane Improved wetland classification using eight-band high resolution satellite imagery and a hybrid approach Remote Sens. 2014 10.3390/rs61212187 6 12187 

  48. Heydari Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites Remote Sens. Environ. 2017 10.1016/j.rse.2017.09.035 204 648 

  49. Dronova Landscape analysis of wetland plant functional types: The effects of image segmentation scale, vegetation classes and classification methods Remote Sens. Environ. 2012 10.1016/j.rse.2012.09.018 127 357 

  50. Stehman Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes Int. J. Remote Sens. 2014 10.1080/01431161.2014.930207 35 4923 

  51. (2017, September 26). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1477-9730.2010.00574_2.x. 

  52. Olofsson Good practices for estimating area and assessing accuracy of land change Remote Sens. Environ. Elsevier Inc. 2014 10.1016/j.rse.2014.02.015 148 42 

  53. Tigges Urban vegetation classi fi cation: Benefits of multitemporal RapidEye satellite data Remote Sens. Environ. 2013 10.1016/j.rse.2013.05.001 136 66 

  54. Massetti Assessing the effectiveness of RapidEye multispectral imagery for vegetation mapping in Madeira Island (Portugal) Eur. J. Remote Sens. 2016 10.5721/EuJRS20164934 49 643 

  55. Yan Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction Remote Sens. Environ. 2015 10.1016/j.rse.2014.11.024 158 478 

  56. Huang An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery IEEE Trans. Geosci. Remote Sens. 2013 10.1109/TGRS.2012.2202912 51 257 

  57. Fassnacht Comparison of feature reduction algorithms for classifying tree species with hyperspectral data on three central european test sites IEEE J. Sel. Top Appl. Earth. Obs. Remote Sens. 2014 10.1109/JSTARS.2014.2329390 7 2547 

  58. Jackson “Low energy” sandy beaches in marine and estuarine environments a review Geomorphol. 2002 10.1016/S0169-555X(02)00179-4 48 147 

  59. (2017, January 13). The Role of Overwash and Inlet Dynamics in the Formation of Salt Marshes on North Carolina Barrier Island. Available online: http://agris.fao.org/agris-search/search.do?recordID=US201303196073. 

  60. Rodriguez Contribution of aeolian sand to backbarrier marsh sedimentation Estuar. Coast Shelf Sci. 2013 10.1016/j.ecss.2012.12.001 117 248 

  61. Leidner Natural, not urban, barriers define population structure for a coastal endemic butterfly Conserv. Genet. 2010 10.1007/s10592-010-0117-5 11 2311 

  62. Levin Indirect effects of feral horses on estuarine communities Conserv Biol. 2002 10.1046/j.1523-1739.2002.01167.x 16 1364 

  63. Taggart Management of Feral Horses at the North Carolina National Estuarine Research Reserve Nat. Areas J. 2008 10.3375/0885-8608(2008)28[187:MOFHAT]2.0.CO;2 28 187 

  64. Dutton Spatial and temporal variability of sea level rise hot spots over the eastern United States Geophys. Res. Lett. 2017 10.1002/2017GL073926 44 7876 

  65. (2018, February 01). Elevated East Coast Sea Level Anomaly: June-July 2009, Available online: http://tidesandcurrents.noaa.gov/publications/EastCoastSeaLevelAnomaly_2009.pdf. 

  66. Theuerkauf Sea level anomalies exacerbate beach erosion Geophys. Res. Lett. 2014 10.1002/2014GL060544 41 5139 

  67. Rodriguez Sediment accommodation control on estuarine evolution: An example from Weeks Bay, Alabama, USA Response of Upper Gulf Coast Estuaries to Holocene Climate Change and Sea-Level Rise 2008 10.1130/2008.2443(03) Volume 443 31 

  68. Morris Responses of coastal wetlands to rising sea level Ecology. 2002 10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2 83 2869 

  69. Fagherazzi Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes Proc. Natl. Acad Sci. USA 2006 10.1073/pnas.0508379103 103 8337 

  70. 10.1038/nature12856 Kirwan, M.L., and Megonigal, J.P. (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 53-60. 

  71. Dronova Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China Remote Sens. Environ. 2011 10.1016/j.rse.2011.07.006 115 3220 

  72. Ma Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery ISPRS J. Photogramm Remote Sens. Int. Soc. Photogramm. Remote Sens. 2015 10.1016/j.isprsjprs.2014.12.026 102 14 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로