$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Finite element analysis of knee and ankle joint during gait based on motion analysis

Medical engineering & physics, v.63, 2019년, pp.33 - 41  

Park, Sangbaek (Corresponding author.) ,  Lee, Seungju ,  Yoon, Jeongro ,  Chae, Soo-Won

Abstract AI-Helper 아이콘AI-Helper

Abstract Contact pressures in the articular cartilage during gait affect injuries and the degenerative arthritis of knee and ankle joints. However, only contact forces at the knee and ankle joints during gait can be estimated by using a rigid body dynamic model. The contact pressure distribution ca...

주제어

참고문헌 (53)

  1. IEEE Trans Biomed Eng Delp 54 11 1940 2007 10.1109/TBME.2007.901024 OpenSim: open-source software to create and analyze dynamic simulations of movement 

  2. Comput Methods Biomech Biomed Eng Huynh 18 2 175 2015 10.1080/10255842.2013.786049 Development and validation of a discretised multi-body spine model in lifeMOD for biodynamic behaviour simulation 

  3. Simul Model Pract Theory Damsgaard 14 8 1100 2006 10.1016/j.simpat.2006.09.001 Analysis of musculoskeletal systems in the anybody modeling system 

  4. J Biomech Liu 41 15 3243 2008 10.1016/j.jbiomech.2008.07.031 Muscle contributions to support and progression over a range of walking speeds 

  5. Med Eng Phys Kia 36 3 335 2014 10.1016/j.medengphy.2013.12.007 Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials 

  6. J Healthc Eng Wang 2017 1 2017 Influence of gait speeds on contact forces of lower limbs 

  7. Osteoarthr Cartil Simic 21 9 1272 2013 10.1016/j.joca.2013.06.001 Altering foot progression angle in people with medial knee osteoarthritis: the effects of varying toe-in and toe-out angles are mediated by pain and malalignment 

  8. Gait Posture Taniguchi 35 4 567 2012 10.1016/j.gaitpost.2011.11.025 Kinematic and kinetic characteristics of Masai barefoot technology footwear 

  9. J Orthop Res Shelburne 24 10 1983 2006 10.1002/jor.20255 Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait 

  10. J Biomech Winby 42 14 2294 2009 10.1016/j.jbiomech.2009.06.019 Muscle and external load contribution to knee joint contact loads during normal gait 

  11. Arch Phys Med Rehabil Cheung 86 2 353 2005 10.1016/j.apmr.2004.03.031 A 3-dimensional finite element model of the human foot and ankle for insole design 

  12. Med Eng Phys Cheung 30 3 269 2008 10.1016/j.medengphy.2007.05.002 Parametric design of pressure-relieving foot orthosis using statistics-based finite element method 

  13. Clin Biomech Cheung 19 8 839 2004 10.1016/j.clinbiomech.2004.06.002 Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex 

  14. J Biomech Cheung 38 5 1045 2005 10.1016/j.jbiomech.2004.05.035 Three-dimensional finite element analysis of the foot during standing - a material sensitivity study 

  15. Clin Biomech Liu 28 1 61 2013 10.1016/j.clinbiomech.2012.10.004 Redistribution of knee stress using laterally wedged insole intervention: finite element analysis of knee-ankle-foot complex 

  16. J Biomech Eng Gefen 122 6 630 2000 10.1115/1.1318904 Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications 

  17. J Biomech Eng Donahue 124 3 273 2002 10.1115/1.1470171 A finite element model of the human knee joint for the study of tibio-femoral contact 

  18. Comput Methods Biomech Biomed Eng Penrose 5 4 291 2002 10.1080/1025584021000009724 Development of an accurate three-dimensional finite element knee model 

  19. Proc IEEE Ackerman 86 3 504 1998 10.1109/5.662875 The visible human project 

  20. J Biomech Eng Kiapour 136 1 011002 2014 10.1115/1.4025692 Finite element model of the knee for investigation of injury mechanisms: development and validation 

  21. Foot Ankle Attarian 6 2 54 1985 10.1177/107110078500600202 Biomechanical characteristics of human ankle ligaments 

  22. Foot Ankle Siegler 8 5 234 1988 10.1177/107110078800800502 The mechanical characteristics of the collateral ligaments of the human ankle joint 

  23. J Biomech Corazza 36 3 363 2003 10.1016/S0021-9290(02)00425-6 Ligament fibre recruitment and forces for the anterior drawer test at the human ankle joint 

  24. J Biomech Butler 19 6 425 1986 10.1016/0021-9290(86)90019-9 Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments 

  25. J Biomech Eng Quapp 120 6 757 1998 10.1115/1.2834890 Material characterization of human medial collateral ligament 

  26. J Biomech Momersteeg 28 6 745 1995 10.1016/0021-9290(94)00121-J The effect of variable relative insertion orientation of human knee bone-ligament-bone complexes on the tensile stiffness 

  27. Drake 2009 Gray’s Anatomy for Students E-Book 

  28. J Orthop Res Adouni 32 1 69 2014 10.1002/jor.22472 Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe AO versus normal subjects 

  29. J Biomech Anderson 40 8 1662 2007 10.1016/j.jbiomech.2007.01.024 Physical validation of a patient-specific contact finite element model of the ankle 

  30. Ann Biomed Eng Arnold 38 2 269 2010 10.1007/s10439-009-9852-5 A model of the lower limb for analysis of human movement 

  31. IEEE Trans Biomed Eng Delp 37 8 757 1990 10.1109/10.102791 An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures 

  32. IEEE Trans Biomed Eng Rajagopal 63 10 2068 2016 10.1109/TBME.2016.2586891 Full-body musculoskeletal model for muscle-driven simulation of human gait 

  33. J Neurophysiol Osu 88 2 991 2002 10.1152/jn.2002.88.2.991 Short-and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG 

  34. J Electromyogr Kinesiol Mogk 13 1 63 2003 10.1016/S1050-6411(02)00071-8 Crosstalk in surface electromyography of the proximal forearm during gripping tasks 

  35. Exp Brain Res McDonnell 161 3 368 2005 10.1007/s00221-004-2081-0 Effect of human grip strategy on force control in precision tasks 

  36. Clin Biomech Nelson-Wong 23 5 545 2008 10.1016/j.clinbiomech.2008.01.002 Gluteus medius muscle activation patterns as a predictor of low back pain during standing 

  37. J Physiol Ivanenko 556 1 267 2004 10.1113/jphysiol.2003.057174 Five basic muscle activation patterns account for muscle activity during human locomotion 

  38. Faux 1979 Computational geometry for design and manufacture 

  39. Briot 19 2015 Dynamics of parallel robots Homogeneous transformation matrix 

  40. J Biomech Shirazi 41 16 3340 2008 10.1016/j.jbiomech.2008.09.033 Role of cartilage collagen fibrils networks in knee joint biomechanics under compression 

  41. Acta Orthop Scand Fukubayashi 51 1-6 871 1980 10.3109/17453678008990887 The contact area and pressure distribution pattern of the knee: a study of normal and osteoarthrotic knee joints 

  42. Clin Orthop Rel Res Kurosawa 149 283 1980 10.1097/00003086-198006000-00039 Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. 

  43. J Biomech Brown 18 3 227 1985 Instantaneous in vitro contact stress distributions on the femoral condyles 

  44. JBJS Krause 58 5 599 1976 10.2106/00004623-197658050-00003 Mechanical changes in the knee after meniscectomy. 

  45. Clin Orthop Rel Res Walker 109 184 1975 10.1097/00003086-197506000-00027 The role of the menisci in force transmission across the knee. 

  46. Proc Inst Mech Eng Part H: J Eng Med Inaba 204 1 61 1990 10.1243/PIME_PROC_1990_204_229_02 Influence of the varus-valgus instability on the contact of the femoro-tibial joint 

  47. Am J Sports Med Li 33 1 102 2005 10.1177/0363546504265577 In vivo articular cartilage contact kinematics of the knee 

  48. J Biomech Komistek 31 2 185 1997 10.1016/S0021-9290(97)00128-0 Mathematical model of the lower extremity joint reaction forces using Kane’s method of dynamics 

  49. Am J Phys Med Rehabil Kakihana 86 6 446 2007 10.1097/PHM.0b013e31805bfff5 Inconsistent knee varus moment reduction caused by a lateral wedge in knee osteoarthritis 

  50. Clin Orthop Rel Res Crenshaw 375 185 2000 10.1097/00003086-200006000-00022 Effects of lateral-wedged insoles on kinetics at the knee. 

  51. Clin Biomech Maly 17 8 603 2002 10.1016/S0268-0033(02)00073-6 Static and dynamic biomechanics of foot orthoses in people with medial compartment knee osteoarthritis 

  52. J Rehab Res Dev Beaupre 37 2 145 2000 Mechanobiology in the development, maintenance, and degeneration of articular cartilage 

  53. Clin Orthop Rel Res Carter 427 S69 2004 10.1097/01.blo.0000144970.05107.7e The mechanobiology of articular cartilage development and degeneration. 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로