최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Biomedicines, v.6 no.4, 2018년, pp.105 -
Martinez-Lage, Marta (Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncoló) , Puig-Serra, Pilar (gicas (CNIO), 28029 Madrid, Spain) , Menendez, Pablo (mmlage@cnio.es (M.M.-L.)) , Torres-Ruiz, Raul (ppuig@cnio.es (P.P.-S.)) , Rodriguez-Perales, Sandra (Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncoló)
Cancer is the second leading cause of death globally and remains a major economic and social burden. Although our understanding of cancer at the molecular level continues to improve, more effort is needed to develop new therapeutic tools and approaches exploiting these advances. Because of its high ...
1. Ishino Y. Shinagawa H. Makino K. Amemura M. Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli , and identification of the gene product J. Bacteriol. 1987 169 5429 5433 10.1128/jb.169.12.5429-5433.1987 3316184
2. Mojica F.J. Juez G. Rodríguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites Mol. Microbiol. 1993 9 613 621 10.1111/j.1365-2958.1993.tb01721.x 8412707
3. Van Soolingen D. de Haas P.E. Hermans P.W. Groenen P.M. van Embden J.D. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis J. Clin. Microbiol. 1993 31 1987 1995 7690367
4. Bolotin A. Quinquis B. Sorokin A. Ehrlich S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin Microbiology 2005 151 2551 2561 16079334
5. Mojica F.J.M. Díez-Villaseñor C. García-Martínez J. Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements J. Mol. Evol. 2005 60 174 182 10.1007/s00239-004-0046-3 15791728
6. Pourcel C. Salvignol G. Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies Microbiology 2005 151 653 663 15758212
7. Van der Oost J. Jore M.M. Westra E.R. Lundgren M. Brouns S.J.J. CRISPR-based adaptive and heritable immunity in prokaryotes Trends Biochem. Sci. 2009 34 401 407 10.1016/j.tibs.2009.05.002 19646880
8. Jinek M. Chylinski K. Fonfara I. Hauer M. Doudna J.A. Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science 2012 337 816 821 10.1126/science.1225829 22745249
9. Cho S.W. Kim S. Kim J.M. Kim J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease Nat. Biotechnol. 2013 31 230 232 10.1038/nbt.2507 23360966
10. Cong L. Ran F.A. Cox D. Lin S. Barretto R. Habib N. Hsu P.D. Wu X. Jiang W. Marraffini L.A. Multiplex genome engineering using CRISPR/Cas systems Science 2013 339 819 823 10.1126/science.1231143 23287718
11. Mali P. Esvelt K.M. Church G.M. Cas9 as a versatile tool for engineering biology Nat. Methods 2013 10 957 963 10.1038/nmeth.2649 24076990
12. Barrangou R. Fremaux C. Deveau H. Richards M. Boyaval P. Moineau S. Romero D.A. Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes Science 2007 315 1709 1712 10.1126/science.1138140 17379808
13. Makarova K.S. Haft D.H. Barrangou R. Brouns S.J.J. Charpentier E. Horvath P. Moineau S. Mojica F.J.M. Wolf Y.I. Yakunin A.F. Evolution and classification of the CRISPR-Cas systems Nat. Rev. Microbiol. 2011 9 467 477 10.1038/nrmicro2577 21552286
14. Gasiunas G. Barrangou R. Horvath P. Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria Proc. Natl. Acad. Sci. USA 2012 109 E2579 E2586 10.1073/pnas.1208507109 22949671
15. Mojica F.J.M. Díez-Villaseñor C. García-Martínez J. Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system Microbiology 2009 155 733 740 19246744
16. Liang F. Han M. Romanienko P.J. Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells Proc. Natl. Acad. Sci. USA 1998 95 5172 5177 10.1073/pnas.95.9.5172 9560248
17. Bibikova M. Carroll D. Segal D.J. Trautman J.K. Smith J. Kim Y.G. Chandrasegaran S. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases Mol. Cell. Biol. 2001 21 289 297 10.1128/MCB.21.1.289-297.2001 11113203
18. Fishman-Lobell J. Haber J.E. Removal of nonhomologous DNA ends in double-strand break recombination: The role of the yeast ultraviolet repair gene RAD1 Science 1992 258 480 484 10.1126/science.1411547 1411547
19. Jakočiūnas T. Bonde I. Herrgård M. Harrison S.J. Kristensen M. Pedersen L.E. Jensen M.K. Keasling J.D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae Metab. Eng. 2015 28 213 222 10.1016/j.ymben.2015.01.008 25638686
20. Wang H. Yang H. Shivalila C.S. Dawlaty M.M. Cheng A.W. Zhang F. Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell 2013 153 910 918 10.1016/j.cell.2013.04.025 23643243
21. Li W. Teng F. Li T. Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems Nat. Biotechnol. 2013 31 684 686 10.1038/nbt.2652 23929337
22. Torres R. Martin M.C. Garcia A. Cigudosa J.C. Ramirez J.C. Rodriguez-Perales S. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system Nat. Commun. 2014 5 3964 10.1038/ncomms4964 24888982
23. Choi P.S. Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology Nat. Commun. 2014 5 3728 10.1038/ncomms4728 24759083
24. Adikusuma F. Williams N. Grutzner F. Hughes J. Thomas P. Targeted Deletion of an Entire Chromosome Using CRISPR/Cas9 Mol. Ther. 2017 25 1736 1738 10.1016/j.ymthe.2017.05.021 28633863
25. Dominguez A.A. Lim W.A. Qi L.S. Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation Nat. Rev. Mol. Cell Biol. 2016 17 5 15 10.1038/nrm.2015.2 26670017
26. Tsai S.Q. Joung J.K. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases Nat. Rev. Genet. 2016 17 300 312 10.1038/nrg.2016.28 27087594
27. Kim S. Kim D. Cho S.W. Kim J. Kim J.-S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins Genome Res. 2014 24 1012 1019 10.1101/gr.171322.113 24696461
28. Lin S. Staahl B.T. Alla R.K. Doudna J.A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery Elife 2014 3 e04766 10.7554/eLife.04766 25497837
29. Ramakrishna S. Kwaku Dad A.-B. Beloor J. Gopalappa R. Lee S.-K. Kim H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA Genome Res. 2014 24 1020 1027 10.1101/gr.171264.113 24696462
30. Zuris J.A. Thompson D.B. Shu Y. Guilinger J.P. Bessen J.L. Hu J.H. Maeder M.L. Joung J.K. Chen Z.-Y. Liu D.R. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo Nat. Biotechnol. 2015 33 73 80 10.1038/nbt.3081 25357182
31. Torres-Ruiz R. Martinez-Lage M. Martin M.C. Garcia A. Bueno C. Castaño J. Ramirez J.C. Menendez P. Cigudosa J.C. Rodriguez-Perales S. Efficient Recreation of t(11;22) EWSR1-FLI1+ in Human Stem Cells Using CRISPR/Cas9 Stem Cell Rep. 2017 8 1408 1420 10.1016/j.stemcr.2017.04.014 28494941
32. Nihongaki Y. Kawano F. Nakajima T. Sato M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing Nat. Biotechnol. 2015 33 755 760 10.1038/nbt.3245 26076431
33. Dow L.E. Fisher J. O’Rourke K.P. Muley A. Kastenhuber E.R. Livshits G. Tschaharganeh D.F. Socci N.D. Lowe S.W. Inducible in vivo genome editing with CRISPR-Cas9 Nat. Biotechnol. 2015 33 390 394 10.1038/nbt.3155 25690852
34. Davis K.M. Pattanayak V. Thompson D.B. Zuris J.A. Liu D.R. Small molecule-triggered Cas9 protein with improved genome-editing specificity Nat. Chem. Biol. 2015 11 316 318 10.1038/nchembio.1793 25848930
35. Truong D.-J.J. Kühner K. Kühn R. Werfel S. Engelhardt S. Wurst W. Ortiz O. Development of an intein-mediated split-Cas9 system for gene therapy Nucleic Acids Res. 2015 43 6450 6458 10.1093/nar/gkv601 26082496
36. Wright A.V. Sternberg S.H. Taylor D.W. Staahl B.T. Bardales J.A. Kornfeld J.E. Doudna J.A. Rational design of a split-Cas9 enzyme complex Proc. Natl. Acad. Sci. USA 2015 112 2984 2989 10.1073/pnas.1501698112 25713377
37. Oakes B.L. Nadler D.C. Flamholz A. Fellmann C. Staahl B.T. Doudna J.A. Savage D.F. Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch Nat. Biotechnol. 2016 34 646 651 10.1038/nbt.3528 27136077
38. Ran F.A. Hsu P.D. Lin C.-Y. Gootenberg J.S. Konermann S. Trevino A.E. Scott D.A. Inoue A. Matoba S. Zhang Y. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell 2013 154 1380 1389 10.1016/j.cell.2013.08.021 23992846
39. Guilinger J.P. Thompson D.B. Liu D.R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification Nat. Biotechnol. 2014 32 577 582 10.1038/nbt.2909 24770324
40. Slaymaker I.M. Gao L. Zetsche B. Scott D.A. Yan W.X. Zhang F. Rationally engineered Cas9 nucleases with improved specificity Science 2016 351 84 88 10.1126/science.aad5227 26628643
41. Kleinstiver B.P. Pattanayak V. Prew M.S. Tsai S.Q. Nguyen N.T. Zheng Z. Joung J.K. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects Nature 2016 529 490 495 10.1038/nature16526 26735016
42. Fleuren E.D.G. Zhang L. Wu J. Daly R.J. The kinome “at large” in cancer Nat. Rev. Cancer 2016 16 83 98 10.1038/nrc.2015.18 26822576
43. Ahmad G. Amiji M. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery Drug Discov. Today 2018 23 519 533 10.1016/j.drudis.2018.01.014 29326075
44. Wang T. Wei J.J. Sabatini D.M. Lander E.S. Genetic screens in human cells using the CRISPR-Cas9 system Science 2014 343 80 84 10.1126/science.1246981 24336569
45. Shalem O. Sanjana N.E. Hartenian E. Shi X. Scott D.A. Mikkelson T. Heckl D. Ebert B.L. Root D.E. Doench J.G. Genome-scale CRISPR-Cas9 knockout screening in human cells Science 2014 343 84 87 10.1126/science.1247005 24336571
46. Joung J. Konermann S. Gootenberg J.S. Abudayyeh O.O. Platt R.J. Brigham M.D. Sanjana N.E. Zhang F. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening Nat. Protoc. 2017 12 828 863 10.1038/nprot.2017.016 28333914
47. Luo J. CRISPR/Cas9: From Genome Engineering to Cancer Drug Discovery Trends Cancer 2016 2 313 324 10.1016/j.trecan.2016.05.001 28603775
48. Maeder M.L. Linder S.J. Cascio V.M. Fu Y. Ho Q.H. Joung J.K. CRISPR RNA-guided activation of endogenous human genes Nat. Methods 2013 10 977 979 10.1038/nmeth.2598 23892898
49. Gilbert L.A. Horlbeck M.A. Adamson B. Villalta J.E. Chen Y. Whitehead E.H. Guimaraes C. Panning B. Ploegh H.L. Bassik M.C. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation Cell 2014 159 647 661 10.1016/j.cell.2014.09.029 25307932
50. Chavez A. Tuttle M. Pruitt B.W. Ewen-Campen B. Chari R. Ter-Ovanesyan D. Haque S.J. Cecchi R.J. Kowal E.J.K. Buchthal J. Comparison of Cas9 activators in multiple species Nat. Methods 2016 13 563 567 10.1038/nmeth.3871 27214048
51. Konermann S. Brigham M.D. Trevino A.E. Joung J. Abudayyeh O.O. Barcena C. Hsu P.D. Habib N. Gootenberg J.S. Nishimasu H. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex Nature 2015 517 583 588 10.1038/nature14136 25494202
52. Kurata M. Yamamoto K. Moriarity B.S. Kitagawa M. Largaespada D.A. CRISPR/Cas9 library screening for drug target discovery J. Hum. Genet. 2018 63 179 186 10.1038/s10038-017-0376-9 29158600
53. Guichard S.M. CRISPR–Cas9 for Drug Discovery in Oncology Platform Technologies in Drug Discovery and Validation Elsevier Amsterdam, The Netherlands 2017 61 85
54. Scott A. How CRISPR is transforming drug discovery Nature 2018 555 S10 S11 10.1038/d41586-018-02477-1 29517026
55. Smurnyy Y. Cai M. Wu H. McWhinnie E. Tallarico J.A. Yang Y. Feng Y. DNA sequencing and CRISPR-Cas9 gene editing for target validation in mammalian cells Nat. Chem. Biol. 2014 10 623 625 10.1038/nchembio.1550 24929529
56. Neggers J.E. Vercruysse T. Jacquemyn M. Vanstreels E. Baloglu E. Shacham S. Crochiere M. Landesman Y. Daelemans D. Identifying drug-target selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing Chem. Biol. 2015 22 107 116 10.1016/j.chembiol.2014.11.015 25579209
57. Walton J. Blagih J. Ennis D. Leung E. Dowson S. Farquharson M. Tookman L.A. Orange C. Athineos D. Mason S. CRISPR/Cas9-Mediated Trp53 and Brca2 Knockout to Generate Improved Murine Models of Ovarian High-Grade Serous Carcinoma Cancer Res. 2016 76 6118 6129 10.1158/0008-5472.CAN-16-1272 27530326
58. Friedland A.E. Tzur Y.B. Esvelt K.M. Colaiácovo M.P. Church G.M. Calarco J.A. Heritable genome editing in C. elegans via a CRISPR-Cas9 system Nat. Methods 2013 10 741 743 10.1038/nmeth.2532 23817069
59. Chen B. Gilbert L.A. Cimini B.A. Schnitzbauer J. Zhang W. Li G.-W. Park J. Blackburn E.H. Weissman J.S. Qi L.S. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system Cell 2013 155 1479 1491 10.1016/j.cell.2013.12.001 24360272
60. Klann T.S. Black J.B. Chellappan M. Safi A. Song L. Hilton I.B. Crawford G.E. Reddy T.E. Gersbach C.A. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome Nat. Biotechnol. 2017 35 561 568 10.1038/nbt.3853 28369033
61. Lawlor E.R. Thiele C.J. Epigenetic changes in pediatric solid tumors: Promising new targets Clin. Cancer Res. 2012 18 2768 2779 10.1158/1078-0432.CCR-11-1921 22589485
62. Shachaf C.M. Kopelman A.M. Arvanitis C. Karlsson A. Beer S. Mandl S. Bachmann M.H. Borowsky A.D. Ruebner B. Cardiff R.D. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer Nature 2004 431 1112 1117 10.1038/nature03043 15475948
64. Choi A.H. O’Leary M.P. Fong Y. Chen N.G. From Benchtop to Bedside: A Review of Oncolytic Virotherapy Biomedicines 2016 4 18 10.3390/biomedicines4030018 28536385
65. Goldsmith K. Chen W. Johnson D.C. Hendricks R.L. Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response J. Exp. Med. 1998 187 341 348 10.1084/jem.187.3.341 9449714
66. Aghi M. Visted T. Depinho R.A. Chiocca E.A. Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16 Oncogene 2008 27 4249 4254 10.1038/onc.2008.53 18345032
67. Bandara L.R. La Thangue N.B. Adenovirus E1a prevents the retinoblastoma gene product from complexing with a cellular transcription factor Nature 1991 351 494 497 10.1038/351494a0 1710781
68. Arroyo M. Raychaudhuri P. Retinoblastoma-repression of E2F-dependent transcription depends on the ability of the retinoblastoma protein to interact with E2F and is abrogated by the adenovirus E1A oncoprotein Nucleic Acids Res. 1992 20 5947 5954 10.1093/nar/20.22.5947 1461728
69. Dyson N. Harlow E. Adenovirus E1A targets key regulators of cell proliferation Cancer Surv. 1992 12 161 195 1353412
70. Su S. Hu B. Shao J. Shen B. Du J. Du Y. Zhou J. Yu L. Zhang L. Chen F. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients Sci. Rep. 2016 6 20070 10.1038/srep20070 26818188
71. Tseng S.Y. Otsuji M. Gorski K. Huang X. Slansky J.E. Pai S.I. Shalabi A. Shin T. Pardoll D.M. Tsuchiya H. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells J. Exp. Med. 2001 193 839 846 10.1084/jem.193.7.839 11283156
72. Dong H. Strome S.E. Salomao D.R. Tamura H. Hirano F. Flies D.B. Roche P.C. Lu J. Zhu G. Tamada K. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion Nat. Med. 2002 8 793 800 10.1038/nm730 12091876
73. Iwai Y. Ishida M. Tanaka Y. Okazaki T. Honjo T. Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade Proc. Natl. Acad. Sci. USA 2002 99 12293 12297 10.1073/pnas.192461099 12218188
74. Tsushima F. Yao S. Shin T. Flies A. Flies S. Xu H. Tamada K. Pardoll D.M. Chen L. Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy Blood 2007 110 180 185 10.1182/blood-2006-11-060087 17289811
75. Fellmann C. Gowen B.G. Lin P.-C. Doudna J.A. Corn J.E. Cornerstones of CRISPR-Cas in drug discovery and therapy Nat. Rev. Drug Discov. 2017 16 89 100 10.1038/nrd.2016.238 28008168
76. Maus M.V. Grupp S.A. Porter D.L. June C.H. Antibody-modified T cells: CARs take the front seat for hematologic malignancies Blood 2014 123 2625 2635 10.1182/blood-2013-11-492231 24578504
77. Cyranoski D. CRISPR gene-editing tested in a person for the first time Nature 2016 539 479 10.1038/nature.2016.20988 27882996
78. Gauthier J. Turtle C.J. Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy Curr. Res. Transl. Med. 2018 66 50 52 10.1016/j.retram.2018.03.003 29625831
79. Muffly L.S. Reizine N. Stock W. Management of acute lymphoblastic leukemia in young adults Clin. Adv. Hematol. Oncol. 2018 16 138 146 29741514
80. Kay M.A. State-of-the-art gene-based therapies: The road ahead Nat. Rev. Genet. 2011 12 316 328 10.1038/nrg2971 21468099
81. Yin H. Kanasty R.L. Eltoukhy A.A. Vegas A.J. Dorkin J.R. Anderson D.G. Non-viral vectors for gene-based therapy Nat. Rev. Genet. 2014 15 541 555 10.1038/nrg3763 25022906
82. Yin H. Song C.-Q. Dorkin J.R. Zhu L.J. Li Y. Wu Q. Park A. Yang J. Suresh S. Bizhanova A. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo Nat. Biotechnol. 2016 34 328 333 10.1038/nbt.3471 26829318
83. Torres R. Garcia A. Jimenez M. Rodriguez S. Ramirez J.C. An integration-defective lentivirus-based resource for site-specific targeting of an edited safe-harbour locus in the human genome Gene Ther. 2014 21 343 352 10.1038/gt.2014.1 24500524
84. Yin H. Kauffman K.J. Anderson D.G. Delivery technologies for genome editing Nat. Rev. Drug Discov. 2017 16 387 399 10.1038/nrd.2016.280 28337020
85. Daya S. Berns K.I. Gene therapy using adeno-associated virus vectors Clin. Microbiol. Rev. 2008 21 583 593 10.1128/CMR.00008-08 18854481
86. Yang S. Chang R. Yang H. Zhao T. Hong Y. Kong H.E. Sun X. Qin Z. Jin P. Li S. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease J. Clin. Investig. 2017 127 2719 2724 10.1172/JCI92087 28628038
87. Gaj T. Ojala D.S. Ekman F.K. Byrne L.C. Limsirichai P. Schaffer D.V. In vivo genome editing improves motor function and extends survival in a mouse model of ALS Sci Adv. 2017 3 eaar3952 10.1126/sciadv.aar3952 29279867
88. Kotterman M.A. Schaffer D.V. Engineering adeno-associated viruses for clinical gene therapy Nat. Rev. Genet. 2014 15 445 451 10.1038/nrg3742 24840552
90. Ahi Y.S. Bangari D.S. Mittal S.K. Adenoviral vector immunity: Its implications and circumvention strategies Curr. Gene Ther. 2011 11 307 320 10.2174/156652311796150372 21453277
91. Kaczmarek J.C. Kowalski P.S. Anderson D.G. Advances in the delivery of RNA therapeutics: From concept to clinical reality Genome Med. 2017 9 60 10.1186/s13073-017-0450-0 28655327
92. Sun W. Ji W. Hall J.M. Hu Q. Wang C. Beisel C.L. Gu Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing Angew. Chem. Int. Ed. Engl. 2015 54 12029 12033 10.1002/anie.201506030 26310292
93. Lee K. Conboy M. Park H.M. Jiang F. Kim H.J. Dewitt M.A. Mackley V.A. Chang K. Rao A. Skinner C. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair Nat. Biomed. Eng. 2017 1 889 901 10.1038/s41551-017-0137-2 29805845
94. Xu Z.P. Zeng Q.H. Lu G.Q. Yu A.B. Inorganic nanoparticles as carriers for efficient cellular delivery Chem. Eng. Sci. 2006 61 1027 1040 10.1016/j.ces.2005.06.019
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.