$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] CRISPR/Cas9 for cancer research and therapy 원문보기

Seminars in cancer biology, v.55, 2019년, pp.106 - 119  

Zhan, Tianzuo (German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Department Cell and Molecular Biology, Faculty of Medicine Mannheim) ,  Rindtorff, Niklas (German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Department Cell and Molecular Biology, Faculty of Medicine Mannheim) ,  Betge, Johannes (German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Department Cell and Molecular Biology, Faculty of Medicine Mannheim) ,  Ebert, Matthias P. (Heidelberg University, Department of Internal Medicine II, Medical Faculty Mannheim) ,  Boutros, Michael (German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Department Cell and Molecular Biology, Faculty of Medicine Mannheim)

Abstract AI-Helper 아이콘AI-Helper

Abstract CRISPR/Cas9 has become a powerful method for making changes to the genome of many organisms. First discovered in bacteria as part of an adaptive immune system, CRISPR/Cas9 and modified versions have found a widespread use to engineer genomes and to activate or to repress the expression of ...

Keyword

참고문헌 (135)

  1. CA. Cancer J. Clin. Torre 65 87 2015 10.3322/caac.21262 Global cancer statistics, 2012 

  2. N. Engl. J. Med. Kantarjian 346 645 2002 10.1056/NEJMoa011573 Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia 

  3. N. Engl. J. Med. Cunningham 351 337 2004 10.1056/NEJMoa033025 Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer 

  4. Nat. Genet. Chang 45 1113 2013 10.1038/ng.2764 The cancer genome atlas pan-cancer analysis project 

  5. Nature T.I.C.G. International Cancer Genome Consortium 464 993 2010 10.1038/nature08987 International network of cancer genome projects 

  6. Cell Garraway 153 17 2013 10.1016/j.cell.2013.03.002 Lessons from the cancer genome 

  7. Nat. Rev. Mol. Cell Biol. Joung 14 49 2012 10.1038/nrm3486 TALENs: a widely applicable technology for targeted genome editing 

  8. Nat. Rev. Genet. Urnov 11 636 2010 10.1038/nrg2842 Genome editing with engineered zinc finger nucleases 

  9. Science. Cong 339 819 2013 10.1126/science.1231143 Multiplex genome engineering using CRISPR/Cas systems 

  10. Science. Mali 339 823 2013 10.1126/science.1232033 RNA-guided human genome engineering via Cas9 

  11. J. Bacteriol. Ishino 169 5429 1987 10.1128/jb.169.12.5429-5433.1987 Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product 

  12. ACS Chem. Biol. Kampmann 2017 CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine 

  13. Microbiology Bolotin 151 2551 2005 10.1099/mic.0.28048-0 Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin 

  14. Microbiology Pourcel 151 653 2005 10.1099/mic.0.27437-0 CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies 

  15. J. Mol. Evol. Mojica 60 174 2005 10.1007/s00239-004-0046-3 Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements 

  16. Science Barrangou 315 1709 2007 10.1126/science.1138140 CRISPR provides acquired resistance against viruses in prokaryotes 

  17. Nature. Deltcheva 471 602 2011 10.1038/nature09886 CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III 

  18. Proc. Natl. Acad. Sci. U. S. A. Gasiunas 109 2012 10.1073/pnas.1208507109 Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria 

  19. Science Jinek 337 816 2012 10.1126/science.1225829 A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity 

  20. J. Bacteriol. Deveau 190 1390 2008 10.1128/JB.01412-07 Phage response to CRISPR-encoded resistance in Streptococcus thermophilus 

  21. Nature. Sternberg 507 62 2014 10.1038/nature13011 DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 

  22. J. Bacteriol. Deveau 190 1390 2008 10.1128/JB.01412-07 Phage response to CRISPR-encoded resistance in Streptococcus thermophilus 

  23. Cell. Chen 155 1479 2013 10.1016/j.cell.2013.12.001 Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system 

  24. Cell Zetsche 163 759 2015 10.1016/j.cell.2015.09.038 Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system 

  25. Science Abudayyeh 353 2016 10.1126/science.aaf5573 C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector 

  26. Mol. Cell. Smargon 65 618 2017 10.1016/j.molcel.2016.12.023 Cas13b Is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28 

  27. Cell Qi 152 1173 2013 10.1016/j.cell.2013.02.022 Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression 

  28. Cell Gilbert 1 2013 CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes 

  29. Nat. Methods Thakore 12 1143 2015 10.1038/nmeth.3630 Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements 

  30. Nat. Methods Maeder 10 977 2013 10.1038/nmeth.2598 CRISPR RNA-guided activation of endogenous human genes 

  31. Nat. Methods Chavez 12 326 2015 10.1038/nmeth.3312 Highly efficient Cas9-mediated transcriptional programming 

  32. Cell Tanenbaum 159 635 2014 10.1016/j.cell.2014.09.039 A protein-tagging system for signal amplification in gene expression and fluorescence imaging 

  33. Nature Konermann 517 583 2014 10.1038/nature14136 Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex 

  34. Nat. Methods Chavez 13 563 2016 10.1038/nmeth.3871 Comparison of Cas9 activators in multiple species 

  35. Biol. Open McDonald 5 866 2016 10.1242/bio.019067 Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation 

  36. Nucleic Acids Res. Vojta 44 5615 2016 10.1093/nar/gkw159 Repurposing the CRISPR-Cas9 system for targeted DNA methylation 

  37. Nucleic Acids Res. Stepper 45 1703 2017 10.1093/nar/gkw1112 Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase 

  38. Cell Discov. Xu 2 16009 2016 10.1038/celldisc.2016.9 A CRISPR-based approach for targeted DNA demethylation 

  39. Nat. Biotechnol. Hilton 33 510 2015 10.1038/nbt.3199 Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers 

  40. Nature Komor 533 420 2016 10.1038/nature17946 Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage 

  41. Nat. Methods Kuscu 14 710 2017 10.1038/nmeth.4327 CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations 

  42. Science Nishida 353 2016 10.1126/science.aaf8729 Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems 

  43. Nat. Methods Ma 13 1029 2016 10.1038/nmeth.4027 Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells 

  44. Nat. Methods Hess 13 1036 2016 10.1038/nmeth.4038 Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells 

  45. Genes Genom. Genet. Hart 7 2719 2017 10.1534/g3.117.041277 Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens 

  46. Nat. Biotechnol. Doench 2016 10.1038/nbt.3437 Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 

  47. Nat. Biotechnol. Tsai 33 187 2014 10.1038/nbt.3117 GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases 

  48. Nat. Methods Kim 12 237 2015 10.1038/nmeth.3284 Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells 

  49. Nat. Methods Tsai 14 607 2017 10.1038/nmeth.4278 CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets 

  50. Nat. Methods Meier 14 831 2017 10.1038/nmeth.4423 GUIDES: sgRNA design for loss-of-function screens 

  51. Genome Biol. Heigwer 17 55 2016 10.1186/s13059-016-0915-2 CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries 

  52. Nat. Biotechnol. Evers 34 631 2016 10.1038/nbt.3536 CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes 

  53. Cancer Discov. Munoz 6 900 2016 10.1158/2159-8290.CD-16-0178 CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions 

  54. Cell Hart 163 1515 2015 10.1016/j.cell.2015.11.015 High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities 

  55. Cancer Discov. Aguirre 6 914 2016 10.1158/2159-8290.CD-16-0154 Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting 

  56. Nat. Genet. Meyers 49 1779 2017 10.1038/ng.3984 Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells 

  57. Cell Rep. Tzelepis 17 1193 2016 10.1016/j.celrep.2016.09.079 A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia 

  58. Mol. Syst. Biol. Rauscher 14 e7656 2018 10.15252/msb.20177656 Toward an integrated map of genetic interactions in cancer cells 

  59. Nat. Biotechnol. Shi 33 661 2015 10.1038/nbt.3235 Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains 

  60. Nature Erb 543 270 2017 10.1038/nature21688 Transcription control by the ENL YEATS domain in acute leukaemia 

  61. Crit. Rev. Biochem. Mol. Biol. Zhan 1 2015 Towards a compendium of essential genes - from model organisms to synthetic lethality in cancer cells 

  62. N. Engl. J. Med. Robson 377 523 2017 10.1056/NEJMoa1706450 Olaparib for metastatic breast cancer in patients with a germline BRCA mutation 

  63. Nat. Med. Steinhart 23 60 2017 10.1038/nm.4219 Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors 

  64. Cell. Wang 168 890 2017 10.1016/j.cell.2017.01.013 Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic ras 

  65. Nat. Rev. Genet. Shalem 16 299 2015 10.1038/nrg3899 High-throughput functional genomics using CRISPR-Cas9 

  66. Mol. Cell. Ruiz 62 307 2016 10.1016/j.molcel.2016.03.006 A genome-wide CRISPR screen identifies CDC25A as a determinant of sensitivity to ATR inhibitors 

  67. Elife. Krall 6 2017 KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer 

  68. Blood Gayle 129 1768 2017 10.1182/blood-2016-09-736892 Identification of apilimod as a first-in-class PIKfyve kinase inhibitor for treatment of B-cell non-Hodgkin lymphoma 

  69. Nat. Biotechnol. Han 35 463 2017 10.1038/nbt.3834 Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions 

  70. Nat. Methods Shen 14 573 2017 10.1038/nmeth.4225 Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions 

  71. Cell Jaitin 167 1883 2016 10.1016/j.cell.2016.11.039 Dissecting immune circuits by linking CRISPR-Pooled screens with single-cell RNA-Seq 

  72. Cell Dixit 167 1853 2016 10.1016/j.cell.2016.11.038 Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens 

  73. Cell Adamson 167 1867 2016 10.1016/j.cell.2016.11.048 A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response 

  74. Nat. Methods Datlinger 14 297 2017 10.1038/nmeth.4177 Pooled CRISPR screening with single-cell transcriptome readout 

  75. Nat. Med. Huarte 21 1253 2015 10.1038/nm.3981 The emerging role of lncRNAs in cancer 

  76. Science Sanjana 353 1545 2016 10.1126/science.aaf7613 High-resolution interrogation of functional elements in the noncoding genome 

  77. Nat. Biotechnol. Korkmaz 34 192 2016 10.1038/nbt.3450 Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9 

  78. Nat. Biotechnol. Zhu 34 1279 2016 10.1038/nbt.3715 Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library 

  79. Science Liu 355 2017 10.1126/science.aah7111 CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells 

  80. Cancer Cell Yan 28 529 2015 10.1016/j.ccell.2015.09.006 Comprehensive genomic characterization of Long non-coding RNAs across human cancers 

  81. Nature Joung 548 343 2017 10.1038/nature23451 Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood 

  82. Nucleic Acids Res. Goyal 45 2016 Challenges of CRISPR/Cas9 applications for long non-coding RNA genes 

  83. Cell Clevers 165 1586 2016 10.1016/j.cell.2016.05.082 Modeling development and disease with organoids 

  84. Cell Stem Cell Schwank 13 653 2013 10.1016/j.stem.2013.11.002 Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients 

  85. Nature Drost 521 43 2015 10.1038/nature14415 Sequential cancer mutations in cultured human intestinal stem cells 

  86. Nat. Med. Matano 21 256 2015 10.1038/nm.3802 Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids 

  87. Science Drost 3130 2017 Use of CRISPR-modified human stem cell organoids to study the origin od mutational signatures in cancer 

  88. Nature Tao 2016 10.1038/nature19799 Frizzled proteins are colonic epithelial receptors for C. difficile toxin B 

  89. Am. J. Physiol. Gastrointest. Liver Physiol. Driehuis 2017 10.1152/ajpgi.00410.2016 CRISPR/Cas 9 genome editing and its applications in organoids 

  90. Nature Xue 514 380 2014 10.1038/nature13589 CRISPR-mediated direct mutation of cancer genes in the mouse liver 

  91. Nat. Commun. Maresch 7 10770 2016 10.1038/ncomms10770 Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice 

  92. Nat. Commun. Zuckermann 6 7391 2015 10.1038/ncomms8391 Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling 

  93. Cancer Lett. Luo 356 347 2015 10.1016/j.canlet.2014.10.045 Adeno-associated virus-mediated cancer gene therapy: current status 

  94. Mol. Ther. Zincarelli 16 1073 2008 10.1038/mt.2008.76 Analysis of AAV serotypes 1-9 mediated Gene expression and tropism in mice after systemic injection 

  95. Biotechnol. J. Senís 9 1402 2014 10.1002/biot.201400046 CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox 

  96. Nat. Commun. Yu 8 14716 2017 10.1038/ncomms14716 Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice 

  97. J. Clin. Invest. Yang 127 2719 2017 10.1172/JCI92087 CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease 

  98. Nat. Biotechnol. Yang 34 334 2016 10.1038/nbt.3469 A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice 

  99. Nat. Commun. Bengtsson 8 14454 2017 10.1038/ncomms14454 Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy 

  100. Science Tabebordbar 351 407 2016 10.1126/science.aad5177 In vivo gene editing in dystrophic mouse muscle and muscle stem cells 

  101. Nat. Methods Chew 13 868 2016 10.1038/nmeth.3993 A multifunctional AAV-CRISPR-Cas9 and its host response 

  102. Adv. Drug Deliv. Rev. Mehnert 64 83 2012 10.1016/j.addr.2012.09.021 Solid lipid nanoparticles: production, characterization and applications 

  103. Nature Pardi 543 248 2017 10.1038/nature21428 Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination 

  104. Cell Rep. Finn 22 2227 2018 10.1016/j.celrep.2018.02.014 A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing 

  105. Cell Res. Jiang 27 440 2017 10.1038/cr.2017.16 A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo 

  106. Angew. Chem. Int. Ed. Miller 56 1059 2017 10.1002/anie.201610209 Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA 

  107. Nat. Biomed. Eng. Lee 1 889 2017 10.1038/s41551-017-0137-2 Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair 

  108. Cancer Treat. Rev. Barata 50 35 2016 10.1016/j.ctrv.2016.08.004 RNA-targeted therapeutics in cancer clinical trials: current status and future directions 

  109. Cell Chen 160 1246 2015 10.1016/j.cell.2015.02.038 Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis 

  110. Gastroenterology Song 152 1161 2017 10.1053/j.gastro.2016.12.002 Genome-wide CRISPR screen identifies regulators of mitogen-activated protein kinase as suppressors of liver tumors in mice 

  111. Nat. Biotechnol. Roper 35 569 2017 10.1038/nbt.3836 In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis 

  112. Proc. Natl. Acad. Sci. Weber 112 13982 2015 10.1073/pnas.1512392112 CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice 

  113. Cell Platt 159 440 2014 10.1016/j.cell.2014.09.014 CRISPR-Cas9 knockin mice for genome editing and cancer modeling 

  114. Nat. Neurosci. Chow 20 1329 2017 10.1038/nn.4620 AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma 

  115. Gene Wirth 525 162 2013 10.1016/j.gene.2013.03.137 History of gene therapy 

  116. Nature Hirsch 551 327 2017 10.1038/nature24487 Regeneration of the entire human epidermis using transgenic stem cells 

  117. N. Engl. J. Med. Mendell 377 1713 2017 10.1056/NEJMoa1706198 Single-dose gene-replacement therapy for spinal muscular atrophy 

  118. N. Engl. J. Med. Rangarajan 377 2519 2017 10.1056/NEJMoa1708483 AAV5-Factor VIII gene transfer in severe hemophilia A 

  119. Lancet Russell 390 849 2017 10.1016/S0140-6736(17)31868-8 Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial 

  120. N. Engl. J. Med. Tebas 370 901 2014 10.1056/NEJMoa1300662 Gene editing of CCR5 in eutologous CD4 T cells of persons infected with HIV 

  121. Nat. Med. Cornu 23 415 2017 10.1038/nm.4313 Refining strategies to translate genome editing to the clinic 

  122. Nature Cyranoski 539 479 2016 10.1038/nature.2016.20988 CRISPR gene-editing tested in a person for the first time 

  123. Proc. Natl. Acad. Sci. Iwai 99 12293 2002 10.1073/pnas.192461099 Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade 

  124. N. Engl. J. Med. Reck 375 1823 2016 10.1056/NEJMoa1606774 Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer 

  125. Nature Eyquem 543 113 2017 10.1038/nature21405 Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection 

  126. Nat. Methods Heigwer 11 122 2014 10.1038/nmeth.2812 E-CRISP: fast CRISPR target site identification 

  127. Nat. Biotechnol. Hsu 31 827 2013 10.1038/nbt.2647 DNA targeting specificity of RNA-guided Cas9 nucleases 

  128. Nucleic Acids Res. Labun 44 W272 2016 10.1093/nar/gkw398 CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering 

  129. Nat. Biotechnol. MacPherson 33 805 2015 10.1038/nbt.3291 Flexible guide-RNA design for CRISPR applications using protospacer workbench 

  130. Nat. Methods Moreno-Mateos 12 982 2015 10.1038/nmeth.3543 CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo 

  131. Nat. Methods Chari 12 823 2015 10.1038/nmeth.3473 Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach 

  132. Bioinformatics Winter 32 632 2016 10.1093/bioinformatics/btv617 caRpools: an R package for exploratory data analysis and documentation of pooled CRISPR/Cas9 screens 

  133. Genome Biol. Li 16 281 2015 10.1186/s13059-015-0843-6 Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR 

  134. Bioinformatics Yu 32 260 2016 10.1093/bioinformatics/btv556 ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling 

  135. bioRxiv Winter 109967 2017 CRISPRAnalyzeR: Interactive analysis, annotation and documentation of pooled CRISPR screens 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로