$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Na and Cl immobilization by size controlled calcium silicate hydrate nanometer pores

Construction & building materials, v.202, 2019년, pp.622 - 635  

Yang, Jun (Department of Civil Engineering, Qingdao University of Technology) ,  Jia, Yuting (Department of Civil Engineering, Qingdao University of Technology) ,  Hou, Dongshuai (Department of Civil Engineering, Qingdao University of Technology) ,  Wang, Pan (Department of Civil Engineering, Qingdao University of Technology) ,  Jin, Zuquan (Department of Civil Engineering, Qingdao University of Technology) ,  Shang, Huaishuai (Department of Civil Engineering, Qingdao University of Technology) ,  Li, Shaochun (Department of Civil Engineering, Qingdao University of Technology) ,  Zhao, Tiejun (Department of Civil Engineering, Qingdao University of Technology)

Abstract AI-Helper 아이콘AI-Helper

Abstract The movement of water and ions in the calcium silicate hydrate (C-S-H) gel pores determines the durability for the material. In this study, molecular dynamics was utilized to study aqueous NaCl solution capillary transport through the C-S-H gel pore with pore size of 3.5 nm, 2.5 nm, 1.5 nm...

주제어

참고문헌 (41)

  1. Nature Logan 488 313 2012 10.1038/nature11477 Membrane-based processes for sustainable power generation using water 

  2. Nature Shannon 452 301 2008 10.1038/nature06599 Science and technology for water purification in the coming decades 

  3. Desalination Zularisam 194 1 211 2006 10.1016/j.desal.2005.10.030 Behaviours of natural organic matter in membrane filtration for surface water treatment-a review 

  4. J. Hazard. Mater. Shi 137 3 1656 2006 10.1016/j.jhazmat.2006.05.008 Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements 

  5. Nature Seo 404 982 2000 10.1038/35010088 A homochiral metal-organic porous material for enantioselective separation and catalysis 

  6. Nat. Mater. Maier 4 805 2005 10.1038/nmat1513 Nanoionics: ion transport and electrochemical storage in confined systems 

  7. Nat. Commun. Abdolhosseini Qomi 5 4960 2014 10.1038/ncomms5960 Combinatorial molecular optimization of cement hydrates 

  8. J. Phys. Chem. C Hou 119 3 1346 2015 10.1021/jp509292q Reactive molecular simulation on water confined in the nanopores of the calcium silicate hydrate gel: structure, reactivity, and mechanical properties 

  9. Acta Materialia Hou 80 Supplement C 264 2014 10.1016/j.actamat.2014.07.059 Molecular simulation of “hydrolytic weakening”: a case study on silica 

  10. Microfluid. Nanofluid. Hou 19 6 1309 2015 10.1007/s10404-015-1646-5 Structural, dynamic and mechanical evolution of water confined in the nanopores of disordered calcium silicate sheets 

  11. J. Am. Chem. Soc. Youssef 133 8 2499 2011 10.1021/ja107003a Glassy nature of water in an ultraconfining disordered material: the case of calcium?silicate?hydrate 

  12. J. Porous Mater. Ma 21 2 207 2014 10.1007/s10934-013-9765-4 Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application 

  13. Acta Materialia Hou 67 Supplement C 81 2014 10.1016/j.actamat.2013.12.016 Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties 

  14. Cem. Concr. Res. Lange 24 5 841 1994 10.1016/0008-8846(94)90004-3 Image analysis techniques for characterization of pore structure of cement-based materials 

  15. J. Am. Chem. Soc. Manzano 134 4 2208 2012 10.1021/ja209152n Confined water dissociation in microporous defective silicates: mechanism, dipole distribution, and impact on substrate properties 

  16. Chem. Sci. Ji 2 3 484 2011 10.1039/C0SC00484G Sulfonated graphene as water-tolerant solid acid catalyst 

  17. J. Am. Ceram. Soc. Thomas 84 8 1811 2001 10.1111/j.1151-2916.2001.tb00919.x State of water in hydrating tricalcium silicate and portland cement pastes as measured by quasi-elastic neutron scattering 

  18. Phys. Rev. E McDonald 72 1 2005 10.1103/PhysRevE.72.011409 Surface relaxation and chemical exchange in hydrating cement pastes: a two-dimensional NMR relaxation study 

  19. J. Phys. Chem. B Peterson 109 30 14449 2005 10.1021/jp052147o Hydration of tricalcium and dicalcium silicate mixtures studied using quasielastic neutron scattering 

  20. J. Chem. Phys. Cerveny 134 3 2011 10.1063/1.3521481 Effect of hydration on the dielectric properties of CSH gel 

  21. J. Phys. Chem. B Bordallo 110 36 17966 2006 10.1021/jp062922f Water dynamics in hardened ordinary portland cement paste or concrete: from quasielastic neutron scattering 

  22. Cem. Concr. Res. Korb 37 3 348 2007 10.1016/j.cemconres.2006.02.009 Comparison of proton field-cycling relaxometry and molecular dynamics simulations for proton-water surface dynamics in cement-based materials 

  23. Microporous and Mesoporous Materials Hou 195 Supplement C 9 2014 10.1016/j.micromeso.2014.04.011 Molecular dynamics study of water and ions transport in nano-pore of layered structure: a case study of tobermorite 

  24. Constr. Build. Mater. Li 151 563 2017 10.1016/j.conbuildmat.2017.06.053 Molecular dynamics study on the chemical bound, physical adsorbed and ultra-confined water molecules in the nano-pore of calcium silicate hydrate 

  25. J. Phys. Chem. C Hou 121 25 13786 2017 10.1021/acs.jpcc.7b04367 Insights on capillary adsorption of aqueous sodium chloride solution in the nanometer calcium silicate channel: a molecular dynamics study 

  26. J. Phys. Chem. B Cygan 108 4 1255 2004 10.1021/jp0363287 Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field 

  27. Cem. Concr. Res. Kalinichev 37 3 337 2007 10.1016/j.cemconres.2006.07.004 Molecular dynamics modeling of the structure, dynamics and energetics of mineral-water interfaces: application to cement materials 

  28. Mater. Chem. Phys. Hou 146 3 503 2014 10.1016/j.matchemphys.2014.04.001 Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale: a molecular dynamics study 

  29. PCCP Dongshuai 18 3 2059 2016 10.1039/C5CP05884H Molecular structure and dynamics of an aqueous sodium chloride solution in nano-pores between portlandite surfaces: a molecular dynamics study 

  30. Cem. Concr. Res. Mishra 102 68 2017 10.1016/j.cemconres.2017.09.003 cemff: A force field database for cementitious materials including validations, applications and opportunities 

  31. J. Comput. Phys. Plimpton 117 1 1 1995 10.1006/jcph.1995.1039 Fast parallel algorithms for short-range molecular dynamics 

  32. Phys. Rev. Washburn 17 3 273 1921 10.1103/PhysRev.17.273 The dynamics of capillary flow 

  33. Cem. Concr. Res. Zhang 102 161 2017 10.1016/j.cemconres.2017.09.010 Water and chloride ions migration in porous cementitious materials: an experimental and molecular dynamics investigation 

  34. Cem. Concr. Res. Yu 31 10 1479 2001 10.1016/S0008-8846(01)00595-6 35Cl NMR relaxation study of cement hydrate suspensions 

  35. J. Mater. Civ. Eng. Hou 26 5 930 2013 10.1061/(ASCE)MT.1943-5533.0000886 Molecular dynamics study of water and ions transported during the nanopore calcium silicate phase: case study of jennite 

  36. Constr. Build. Mater. Zhou 126 991 2016 10.1016/j.conbuildmat.2016.09.110 Chloride ions transport and adsorption in the nano-pores of silicate calcium hydrate: experimental and molecular dynamics studies 

  37. Microporous Mesoporous Mater. Zhou 255 23 2018 10.1016/j.micromeso.2017.07.024 Experimental and molecular dynamics studies on the transport and adsorption of chloride ions in the nano-pores of calcium silicate phase: The influence of calcium to silicate ratios 

  38. Bull. Chem. Soc. Jpn. Ohtomo 53 7 1789 1980 10.1246/bcsj.53.1789 Neutron diffraction study of aqueous ionic solutions. II. Aqueous solutions of sodium chloride and potassium chloride 

  39. Chem. Rev. Ohtaki 93 3 1157 1993 10.1021/cr00019a014 Structure and dynamics of hydrated ions 

  40. PCCP Hou 17 2 1411 2015 10.1039/C4CP04137B Water transport in the nano-pore of the calcium silicate phase: reactivity, structure and dynamics 

  41. J. Chem. Phys. Chowdhuri 115 8 3732 2001 10.1063/1.1387447 Molecular dynamics simulations of aqueous NaCl and KCl solutions: Effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로