$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

3D printing of twisting and rotational bistable structures with tuning elements 원문보기

Scientific reports, v.9, 2019년, pp.324 -   

Jeong, Hoon Yeub (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea) ,  An, Soo-Chan (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea) ,  Seo, In Cheol (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea) ,  Lee, Eunseo (School of Mechanical, Aerospace and Nuclear Engineering, UNIST, Ulsan, 44919 Republic of Korea) ,  Ha, Sangho (School of Mechanical, Aerospace and Nuclear Engineering, UNIST, Ulsan, 44919 Republic of Korea) ,  Kim, Namhun (School of Mechanical, Aerospace and Nuclear Engineering, UNIST, Ulsan, 44919 Republic of Korea) ,  Jun, Young Chul (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Three-dimensional (3D) printing is ideal for the fabrication of various customized 3D components with fine details and material-design complexities. However, most components fabricated so far have been static structures with fixed shapes and functions. Here we introduce bistability to 3D printing to...

참고문헌 (35)

  1. 1. Lipson, H. & Kurman, M. Fabricated: The New World of 3D Printing (Wiley, 2013). 

  2. 2. Gibson, I., Rosen, D. & Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (Springer, 2014). 

  3. 3. Barnatt, C. 3D printing (CreateSpace Independent Publishing Platform, 2016). 

  4. 4. Hyer MW Some observations on the cured shape of thin unsymmetric laminates J Compos Mater 1981 15 175 194 10.1177/002199838101500207 

  5. 5. Daynes S Weaver PM Stiffness tailoring using prestress in adaptive composite structures Compos. Struct. 2013 106 282 287 10.1016/j.compstruct.2013.05.059 

  6. 6. Ryu J Generalized curvature tailoring of bistable CFRP laminates by curing on a cylindrical tool-plate with misalignment Compos. Sci. Technol. 2014 103 127 133 10.1016/j.compscitech.2014.08.024 

  7. 7. Waitukaitis S Menaut R Chen BG Hecke MV Origami Multistability: From Single Vertices to Metasheets Phys. Rev. Lett. 2015 114 055503 10.1103/PhysRevLett.114.055503 25699454 

  8. 8. Yasuda H Yang J Reentrant Origami-Based Metamaterials with Negative Poisson’s Ratio and Bistability Phys. Rev. Lett. 2015 114 185502 10.1103/PhysRevLett.114.185502 26001009 

  9. 9. Silverberg JL Origami structures with a critical transition to bistability arising from hidden degrees of freedom Nat. Mater. 2015 14 389 393 10.1038/nmat4232 25751075 

  10. 10. Santer M Pellegrino S Compliant multistable structural elements Int. J. Solids Struct. 2008 45 6190 6204 10.1016/j.ijsolstr.2008.07.014 

  11. 11. Howell, L. L., Magleby, S. P. & Olsen, B. M. Handbook of Compliant Mechanisms . 1st ed. (Wiley, 2013). 

  12. 12. Oh YS Kota S Synthesis of multistable equilibrium compliant mechanisms using combinations of bistable mechanisms J. Mech. Des. 2009 131 021002 10.1115/1.3013316 

  13. 13. Chen, G., Gou, Y. & Yang, L. Research on Multistable Compliant Mechanisms: The State of the Art. Proceedings of the 9th International Conference on Frontiers of Design and Manufacturing , 1–5 (2010). 

  14. 14. Forterre Y Skotheim JM Dumais J Mahadevan L How the Venus flytrap snaps Nature 2005 433 421 425 10.1038/nature03185 15674293 

  15. 15. Skotheim J M Mahadevan L Physical Limits and Design Principles for Plant and Fungal Movements Science 2005 308 1308 1310 10.1126/science.1107976 15919993 

  16. 16. Wingert A Lichter M Dubowsky S Hafez M Hyper-redundant robot manipulators actuated by optimized binary-dielectric polymers Proceedings of SPIE 2002 4695 415 423 10.1117/12.475189 

  17. 17. Schioler T Pellegrino S Space Frames with Multiple Stable Configurations AIAA Journal 2007 45 1740 1747 10.2514/1.16825 

  18. 18. Hu N Burgueño R Buckling-induced smart applications: recent advances and trends Smart Mater. Struct. 2015 24 063001 10.1088/0964-1726/24/6/063001 

  19. 19. Behl M Lendlein A Shape-memory polymers Mater. Today 2007 10 20 28 10.1016/S1369-7021(07)70047-0 

  20. 20. Hager MD Bode S Weber C Schubert US Shape memory polymers: Past, present and future developments Prog. Polym. Sci. 2015 49-50 3 33 10.1016/j.progpolymsci.2015.04.002 

  21. 21. Shan S Multistable Architected Materials for Trapping Elastic Strain Energy Adv. Mater. 2015 27 4296 4301 10.1002/adma.201501708 26088462 

  22. 22. Rafsanjani A Akbarzadeh A Pasini D Snapping Mechanical Metamaterials under Tension Adv. Mater. 2015 27 5931 5935 10.1002/adma.201502809 26314680 

  23. 23. Raney JR Stable propagation of mechanical signals in soft media using stored elastic energy Proc. Natl. Acad. Sci. 2016 113 9722 9727 10.1073/pnas.1604838113 27519797 

  24. 24. Chen T Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically with Multi-Material 3D Printing Sci. Rep. 2017 7 45671 10.1038/srep45671 28361891 

  25. 25. Holmes DP Crosby AJ Snapping surfaces Adv. Mater. 2007 19 3589 3593 10.1002/adma.200700584 

  26. 26. Bertoldi K Reis PM Willshaw S Mullin T Negative Poisson’s Ratio Behavior Induced by an Elastic Instability Adv. Mater. 2010 22 361 366 10.1002/adma.200901956 20217719 

  27. 27. Tibbits, S. The Emergence of 4D Printing. TED Conferences (2013). 

  28. 28. Raviv D Active printed materials for complex self-evolving deformations Sci. Rep. 2014 4 7422 10.1038/srep07422 25522053 

  29. 29. Wu JT Multi-shape active composites by 3D printing of digital shape memory polymers Sci. Rep. 2016 6 24224 10.1038/srep24224 27071543 

  30. 30. Khare V Sonkaria S Lee G-Y Ahn S-H Chu W-S From 3D to 4D printing – design, material and fabrication for multi-functional multi-materials Int. J. Precis. Eng. Manuf.-Green Tech. 2017 4 291 299 10.1007/s40684-017-0035-9 

  31. 31. Lee J Kim H-C Choi J-W Lee IH A Review on 3D Printed Smart Devices for 4D Printing Int. J. Precis. Eng. Manuf.-Green Tech. 2017 4 373 383 10.1007/s40684-017-0042-x 

  32. 32. Kwon JY Park HW Park Y-B Kim N Potentials of additive manufacturing with smart materials for chemical biomarkers in wearable applications Int. J. Precis. Eng. Manuf.-Green Tech. 2017 4 335 347 10.1007/s40684-017-0039-5 

  33. 33. Ding Z Direct 4D printing via active composite materials Sci. Adv. 2017 3 e1602890 10.1126/sciadv.1602890 28439560 

  34. 34. Chen T Bilal OR Shea K Daraio C Harnessing bistability for directional propulsion of untethered, soft robots Proc. Natl. Acad. Sci. 2018 115 5698 5702 10.1073/pnas.1800386115 29765000 

  35. 35. Chen T Shea K An Autonomous Programmable Actuator and Shape Reconfigurable Structures using Bistability and Shape Memory Polymers. 3D Print Addit. Manuf. 2018 5 91 101 10.1016/j.addma.2018.02.009 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로