$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

3D Printing of Bioceramics for Bone Tissue Engineering 원문보기

Materials, v.12 no.20, 2019년, pp.3361 -   

Zafar, Muhammad Jamshaid (School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China) ,  Zhu, Dongbin (School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China) ,  Zhang, Zhengyan (School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China)

Abstract AI-Helper 아이콘AI-Helper

Bioceramics have frequent use in functional restoration of hard tissues to improve human well-being. Additive manufacturing (AM) also known as 3D printing is an innovative material processing technique extensively applied to produce bioceramic parts or scaffolds in a layered perspicacious manner. Mo...

참고문헌 (139)

  1. Sachs Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model J. Eng. Ind. 1992 10.1115/1.2900701 114 481 

  2. Malik Three-dimensional printing in surgery: A review of current surgical applications J. Surg. Res. 2015 10.1016/j.jss.2015.06.051 199 512 

  3. An Design and 3D Printing of Scaffolds and Tissues Engineering 2015 10.15302/J-ENG-2015061 1 261 

  4. Ma 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy Acta Biomater. 2018 10.1016/j.actbio.2018.08.026 79 37 

  5. Derby Printing and Prototyping of Tissues and Scaffolds Science 2012 10.1126/science.1226340 338 921 

  6. Turnbull 3D bioactive composite scaffolds for bone tissue engineering Bioact. Mater. 2018 3 278 

  7. Best Bioceramics: Past, present and for the future J. Eur. Ceram. Soc. 2008 10.1016/j.jeurceramsoc.2007.12.001 28 1319 

  8. Blokhuis Bioactive and osteoinductive bone graft substitutes: Definitions, facts and myths Injury 2011 10.1016/j.injury.2011.06.010 42 26 

  9. Jones Regeneration of trabecular bone using porous ceramics Curr. Opin. Solid State Mater. Sci. 2003 10.1016/j.cossms.2003.09.012 7 301 

  10. Schieker Biomaterials as Scaffold for Bone Tissue Engineering Eur. J. Trauma 2006 10.1007/s00068-006-6047-8 32 114 

  11. Bose Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review Acta Biomater. 2012 10.1016/j.actbio.2011.11.017 8 1401 

  12. Wu Biomimetic porous scaffolds for bone tissue engineering Mater. Sci. Eng. R Rep. 2014 10.1016/j.mser.2014.04.001 80 1 

  13. Brie A new custom made bioceramic implant for the repair of large and complex craniofacial bone defects J. Cranio Maxillofac. Surg. 2013 10.1016/j.jcms.2012.11.005 41 403 

  14. Tang Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration Biomaterials 2016 10.1016/j.biomaterials.2016.01.024 83 363 

  15. Brunello Powder-based 3D printing for bone tissue engineering Biotechnol. Adv. 2016 10.1016/j.biotechadv.2016.03.009 34 740 

  16. Murphy 3D bioprinting of tissues and organs Nat. Biotechnol. 2014 10.1038/nbt.2958 32 773 

  17. (2012). ASTM F2792-12a, ASTM International. Standard Terminology for Additive Manufacturing Technologies, (Withdrawn 2015). 

  18. 10.1007/978-1-4939-2113-3 Gibson, I., Rosen, D., and Stucker, B. (2015). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer. 

  19. Miyanaji Process development for green part printing using binder jetting additive manufacturing Front. Mech. Eng. 2018 10.1007/s11465-018-0508-8 13 504 

  20. Snelling Binder jetting advanced ceramics for metal-ceramic composite structures Int. J. Adv. Manuf. Technol. 2017 10.1007/s00170-017-0139-y 92 531 

  21. Cima, L.G., and Cima, M.J. (1996). Massachusetts Institute of Technology, Assignee. Preparation of Medical Devices by Solid Free-Form Fabrication. (Application No. 08138345), U.S. Patent. 

  22. Sachs, E.M., Haggerty, J.S., Cima, M.J., and Williams, P.A. (1995). Three-Dimensional Printing Techniques. (Application No. 5387380A), U.S. Patent. 

  23. Lu Effect of particle size on three-dimensional printed mesh structures Powder Technol. 2009 10.1016/j.powtec.2008.12.011 192 178 

  24. Lee Fundamentals and applications of 3D printing for novel materials Appl. Mater. Today 2017 10.1016/j.apmt.2017.02.004 7 120 

  25. Balla Processing of Bulk Alumina Ceramics Using Laser Engineered Net Shaping Int. J. Appl. Ceram. Technol. 2008 10.1111/j.1744-7402.2008.02202.x 5 234 

  26. Zhai Fatigue crack growth behavior and microstructural mechanisms in Ti-6Al-4V manufactured by laser engineered net shaping Int. J. Fatigue 2016 10.1016/j.ijfatigue.2016.08.009 93 51 

  27. Schiele Gelatin-Based Laser Direct-Write Technique for the Precise Spatial Patterning of Cells Tissue Eng. Part C Methods 2011 10.1089/ten.tec.2010.0442 17 289 

  28. Ozbolat Bioprinting Toward Organ Fabrication: Challenges and Future Trends IEEE Trans. Biomed. Eng. 2013 10.1109/TBME.2013.2243912 60 691 

  29. Ghazanfari, A., Li, W., Leu, M., and Hilmas, G. (2016, January 8-10). A Novel Extrusion-Based Additive Manufacturing Process for Ceramic Parts. Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA. 

  30. Deckers Additive Manufacturing of Ceramics: A Review J. Ceram. Sci. Technol. 2014 5 245 

  31. Bose Processing of controlled porosity ceramic structures via fused deposition Scr. Mater. 1999 10.1016/S1359-6462(99)00250-X 41 1009 

  32. Ozbolat Current advances and future perspectives in extrusion-based bioprinting Biomaterials 2016 10.1016/j.biomaterials.2015.10.076 76 321 

  33. Ji Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs Front. Bioeng. Biotechnol. 2017 10.3389/fbioe.2017.00023 5 23 

  34. Derby Additive Manufacture of Ceramics Components by Inkjet Printing Engineering 2015 10.15302/J-ENG-2015014 1 113 

  35. Sing Direct selective laser sintering and melting of ceramics: A review Rapid Prototyp. J. 2017 10.1108/RPJ-11-2015-0178 23 611 

  36. Qian Laser sintering of ceramics J. Asian Ceram. Soc. 2013 10.1016/j.jascer.2013.08.004 1 315 

  37. Kruth Binding mechanisms in selective laser sintering and selective laser melting Rapid Prototyp. J. 2005 10.1108/13552540510573365 11 26 

  38. Bertrand Ceramic components manufacturing by selective laser sintering Appl. Surf. Sci. 2007 10.1016/j.apsusc.2007.08.085 254 989 

  39. Mazzoli Selective laser sintering in biomedical engineering Med. Biol. Eng. Comput. 2013 10.1007/s11517-012-1001-x 51 245 

  40. Haeri Optimisation of blade type spreaders for powder bed preparation in Additive Manufacturing using DEM simulations Powder Technol. 2017 10.1016/j.powtec.2017.08.011 321 94 

  41. Chartrain A review on fabricating tissue scaffolds using vat photopolymerization Acta Biomater. 2018 10.1016/j.actbio.2018.05.010 74 90 

  42. Melchels A review on stereolithography and its applications in biomedical engineering Biomaterials 2010 10.1016/j.biomaterials.2010.04.050 31 6121 

  43. Stevens Conformal Robotic Stereolithography 3D Print. Addit. Manuf. 2016 10.1089/3dp.2016.0042 3 226 

  44. Li Fabrication of bioceramic scaffolds with pre-designed internal architecture by gel casting and indirect stereolithography techniques J. Porous Mater. 2008 10.1007/s10934-007-9148-9 15 667 

  45. Wu Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing Ceram. Int. 2017 10.1016/j.ceramint.2016.10.027 43 968 

  46. Islam Comparison of dimensional accuracies of stereolithography and powder binder printing Int. J. Adv. Manuf. Technol. 2017 10.1007/s00170-016-8988-3 88 3077 

  47. He Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process JOM 2018 10.1007/s11837-017-2657-3 70 407 

  48. Hench Bioceramics and the origin of life J. Biomed. Mater. Res. 1989 10.1002/jbm.820230703 23 685 

  49. Habraken Calcium phosphates in biomedical applications: Materials for the future? Mater. Today 2016 10.1016/j.mattod.2015.10.008 19 69 

  50. Oonishi Orthopaedic applications of hydroxyapatite Biomaterials 1991 10.1016/0142-9612(91)90196-H 12 171 

  51. Petit The use of hydroxyapatite in orthopaedic surgery: A ten-year review Eur. J. Orthop. Surg. Traumatol. 1999 10.1007/BF01695730 9 71 

  52. Zeng 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing J. Mater. Sci. 2018 10.1007/s10853-018-1992-2 53 6291 

  53. Chibowski Synthesis of hydroxyapatite for biomedical applications Adv. Colloid Interface Sci. 2017 10.1016/j.cis.2017.04.007 249 321 

  54. Zhou Nanoscale hydroxyapatite particles for bone tissue engineering Acta Biomater. 2011 10.1016/j.actbio.2011.03.019 7 2769 

  55. Bouler Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response Acta Biomater. 2017 10.1016/j.actbio.2017.01.076 53 1 

  56. Ayoub Mandibular reconstruction in the rabbit using beta-tricalcium phosphate (β-TCP) scaffolding and recombinant bone morphogenetic protein 7 (rhBMP-7)-Histological, radiographic and mechanical evaluations J. Cranio Maxillofac. Surg. 2012 10.1016/j.jcms.2012.03.005 40 461 

  57. Ryu An improvement in sintering property of β-tricalcium phosphate by adition of calcium pyrophosphate Biomaterials 2002 10.1016/S0142-9612(01)00201-0 23 909 

  58. Brazete Influence of the Ca/P ratio and cooling rate on the allotropic α β-tricalcium phosphate phase transformations Ceram. Int. 2018 10.1016/j.ceramint.2018.02.005 44 8249 

  59. Fernandes Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue Acta Biomater. 2017 10.1016/j.actbio.2017.06.046 59 2 

  60. Baino Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances Acta Biomater. 2016 10.1016/j.actbio.2016.06.033 42 18 

  61. Rahaman Bioactive glass in tissue engineering Acta Biomater. 2011 10.1016/j.actbio.2011.03.016 7 2355 

  62. Liu An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration Acta Biomater. 2008 10.1016/j.actbio.2008.02.025 4 1472 

  63. Parent Design of calcium phosphate ceramics for drug delivery applications in bone diseases: A review of the parameters affecting the loading and release of the therapeutic substance J. Control. Release 2017 10.1016/j.jconrel.2017.02.012 252 1 

  64. Ahmad, O., and Soodeh, A. (2019, October 11). Application of Bioceramics in Orthopedics and Bone Tissue Engineering. Available online: https://www.researchgate.net/publication/321939283_Application_of_Bioceramics_in_Orthopedics_and_Bone_Tissue_Engineering. 

  65. Hench Bioceramics: From Concept to Clinic J. Am. Ceram. Soc. 1991 10.1111/j.1151-2916.1991.tb07132.x 74 1487 

  66. Chevalier Ceramics for medical applications: A picture for the next 20 years J. Eur. Ceram. Soc. 2009 10.1016/j.jeurceramsoc.2008.08.025 29 1245 

  67. Dorozhkin Calcium orthophosphate bioceramics Ceram. Int. 2015 10.1016/j.ceramint.2015.08.004 41 13913 

  68. 10.1007/978-3-642-53980-0 Ben-Nissan, B. (2014). Clinical Applications of Hydroxyapatite in Orthopedics. Advances in Calcium Phosphate Biomaterials, Springer Berlin Heidelberg. 

  69. Asri A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals J. Mech. Behav. Biomed. Mater. 2016 10.1016/j.jmbbm.2015.11.031 57 95 

  70. Cox 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications Mater. Sci. Eng. C 2015 10.1016/j.msec.2014.11.024 47 237 

  71. Ayoub Composite nanostructured hydroxyapatite/yttrium stabilized zirconia dental inserts-The processing and application as dentin substitutes Ceram. Int. 2018 10.1016/j.ceramint.2018.07.028 44 18200 

  72. Hung Titanium surface modified by hydroxyapatite coating for dental implants Surf. Coat. Technol. 2013 10.1016/j.surfcoat.2012.03.037 231 337 

  73. Ciobanu Cerium-doped hydroxyapatite/collagen coatings on titanium for bone implants Ceram. Int. 2019 10.1016/j.ceramint.2018.07.290 45 2852 

  74. Shi Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts Mater. Sci. Eng. C 2018 10.1016/j.msec.2018.04.026 90 706 

  75. Conoscenti Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering Int. J. Biol. Macromol. 2018 10.1016/j.ijbiomac.2018.08.007 119 945 

  76. He Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering Int. J. Biol. Macromol. 2018 10.1016/j.ijbiomac.2018.04.085 115 385 

  77. Gervaso Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling Ceram. Int. 2019 10.1016/j.ceramint.2018.07.297 45 2803 

  78. Barry In vitro study of hydroxyapatite-based photocurable polymer composites prepared by laser stereolithography and supercritical fluid extraction Acta Biomater. 2008 10.1016/j.actbio.2008.05.024 4 1603 

  79. Li Hydroxyapatite/Collagen Three-Dimensional Printed Scaffolds and Their Osteogenic Effects on Human Bone Marrow-Derived Mesenchymal Stem Cells Tissue Eng. Part A 2019 10.1089/ten.tea.2018.0201 25 1261 

  80. Woesz Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting Mater. Sci. Eng. C 2005 10.1016/j.msec.2005.01.014 25 181 

  81. Saiz Preparation of porous hydroxyapatite scaffolds Mater. Sci. Eng. C 2007 10.1016/j.msec.2006.05.038 27 546 

  82. Virginie In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice Biofabrication 2010 10.1088/1758-5082/2/1/014101 2 014101 

  83. Tian β-tricalcium phosphate composite ceramics with high compressive strength, enhanced osteogenesis and inhibited osteoclastic activities Colloids Surf. B Biointerfaces 2018 10.1016/j.colsurfb.2018.04.028 167 318 

  84. Hirakawa The accelerated effect of recombinant human bone morphogenetic protein 2 delivered by β-tricalcium phosphate on tendon-to-bone repair process in rabbit models J. Shoulder Elb. Surg. 2018 10.1016/j.jse.2017.11.025 27 894 

  85. Cheng Ectopic bone formation cannot occur by hydroxyapatite/β-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice Appl. Surf. Sci. 2012 10.1016/j.apsusc.2012.04.168 262 200 

  86. Bohner Aqueous impregnation of porous β-tricalcium phosphate scaffolds Acta Biomater. 2010 10.1016/j.actbio.2010.01.018 6 2760 

  87. Horch Synthetic, pure-phase beta-tricalcium phosphate ceramic granules for bone regeneration in the reconstructive surgery of the jaws Int. J. Oral Maxillofac. Surg. 2006 10.1016/j.ijom.2006.03.017 35 708 

  88. Zerbo Histology of human alveolar bone regeneration with a porous tricalcium phosphate Clin. Oral Implant. Res. 2001 10.1034/j.1600-0501.2001.012004379.x 12 379 

  89. Li Preparation of bioactive β-tricalcium phosphate microspheres as bone graft substitute materials Mater. Sci. Eng. C 2017 10.1016/j.msec.2016.03.040 70 1200 

  90. Cao 3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation Biochem. Biophys. Res. Commun. 2019 10.1016/j.bbrc.2019.03.132 512 889 

  91. Bian Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering Rapid Prototyp. J. 2012 10.1108/13552541211193511 18 68 

  92. Bose Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds Ann. Biomed. Eng. 2018 10.1007/s10439-018-2040-8 46 1241 

  93. Tarafder Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering J. Tissue Eng. Regen. Med. 2013 10.1002/term.555 7 631 

  94. Giannoudis Bone substitutes: An update Injury 2005 10.1016/j.injury.2005.07.029 36 20 

  95. Aro Molecular basis for action of bioactive glasses as bone graft substitute Scand. J. Surg. 2006 10.1177/145749690609500204 95 95 

  96. Eqtesadi Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering J. Eur. Ceram. Soc. 2014 10.1016/j.jeurceramsoc.2013.08.003 34 107 

  97. Xynos Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution J. Biomed. Mater. Res. 2001 10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D 55 151 

  98. Wu Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability Acta Biomater. 2011 10.1016/j.actbio.2011.03.009 7 2644 

  99. Pei 3D printed mesoporous bioactive glass/metal-organic framework scaffolds with antitubercular drug delivery Microporous Mesoporous Mater. 2018 10.1016/j.micromeso.2018.06.012 272 24 

  100. Baino Bioactive glasses-When glass science and technology meet regenerative medicine Ceram. Int. 2018 10.1016/j.ceramint.2018.05.180 44 14953 

  101. Hsu Macroporous microbeads containing apatite-modified mesoporous bioactive glass nanofibres for bone tissue engineering applications Mater. Sci. Eng. C 2018 10.1016/j.msec.2018.04.027 89 346 

  102. Lee Direct ink writing of highly bioactive glasses J. Eur. Ceram. Soc. 2018 10.1016/j.jeurceramsoc.2017.08.006 38 837 

  103. Padilla Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering J. Biomed. Mater. Res. Part A 2007 10.1002/jbm.a.30934 81 224 

  104. Westhauser Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo J. Mater. Sci. Mater. Med. 2016 10.1007/s10856-016-5732-3 27 119 

  105. Liu Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility Ceram. Int. 2019 10.1016/j.ceramint.2019.02.195 45 11079 

  106. 10.1371/journal.pone.0174870 Wang, Y., Wang, K., Li, X., Wei, Q., Chai, W., Wang, S., Che, Y., Lu, T., and Zhang, B. (2017). 3D fabrication and characterization of phosphoric acid scaffold with a HA/beta-TCP weight ratio of 60:40 for bone tissue engineering applications. PLoS ONE, 12. 

  107. Tarafder Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis ACS Appl. Mater. Interfaces 2014 10.1021/am501048n 6 9955 

  108. Luo 13-93 bioactive glass/alginate composite scaffolds 3D printed under mild conditions for bone regeneration RSC Adv. 2017 10.1039/C6RA27669E 7 11880 

  109. 10.1186/1741-7015-9-66 Dimitriou, R., Jones, E., McGonagle, D., and Giannoudis, P. (2011). Bone regeneration: current concepts and future directions. BMC Med., 9. 

  110. Pilia Development of Composite Scaffolds for Load-Bearing Segmental Bone Defects BioMed Res. Int. 2013 10.1155/2013/458253 2013 458253 

  111. Reichert Custom-made composite scaffolds for segmental defect repair in long bones Int. Orthop. 2011 10.1007/s00264-010-1146-x 35 1229 

  112. Herschler A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair Acta Biomater. 2011 10.1016/j.actbio.2010.07.012 7 16 

  113. Chengtie A review of bioactive silicate ceramics Biomed. Mater. 2013 10.1088/1748-6041/8/3/032001 8 032001 

  114. Fu Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives Mater. Sci. Eng. C 2011 10.1016/j.msec.2011.04.022 31 1245 

  115. Rezwan Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering Biomaterials 2006 10.1016/j.biomaterials.2006.01.039 27 3413 

  116. Vorndran 3D Powder Printing of β-Tricalcium Phosphate Ceramics Using Different Strategies Adv. Eng. Mater. 2008 10.1002/adem.200800179 10 67 

  117. Detsch In vitro -Osteoclastic Activity Studies on Surfaces of 3D Printed Calcium Phosphate Scaffolds J. Biomater. Appl. 2011 10.1177/0885328210373285 26 359 

  118. Fielding SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo Acta Biomater. 2013 10.1016/j.actbio.2013.07.009 9 9137 

  119. Wang Study on the Mechanical Properties of Three-Dimensional Directly Binding Hydroxyapatite Powder Cell Biochem. Biophys. 2015 10.1007/s12013-014-0452-0 72 289 

  120. Miguel Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement Biofabrication 2014 10.1088/1758-5082/6/2/025005 6 025005 

  121. Butscher New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes Acta Biomater. 2013 10.1016/j.actbio.2013.07.019 9 9149 

  122. Chumnanklang 3D printing of hydroxyapatite: Effect of binder concentration in pre-coated particle on part strength Mater. Sci. Eng. C 2007 10.1016/j.msec.2006.11.004 27 914 

  123. Suwanprateeb Mechanical and in vitro performance of apatite-Wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing J. Mater. Sci. Mater. Med. 2009 10.1007/s10856-009-3697-1 20 1281 

  124. Hwa Recent advances in 3D printing of porous ceramics: A review Curr. Opin. Solid State Mater. Sci. 2017 10.1016/j.cossms.2017.08.002 21 323 

  125. Newman Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects Sci. Rep. 2016 10.1038/srep19468 6 19468 

  126. Fierz The morphology of anisotropic 3D-printed hydroxyapatite scaffolds Biomaterials 2008 10.1016/j.biomaterials.2008.06.012 29 3799 

  127. Dellinger Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2 J. Biomed. Mater. Res. 2006 10.1002/jbm.a.30523 76 366 

  128. Hollinger Role of Bone Substitutes Clin. Orthop. Relat. Res. 1996 10.1097/00003086-199603000-00008 324 55 

  129. Kaully Vascularization-The Conduit to Viable Engineered Tissues Tissue Eng. Part B Rev. 2009 10.1089/ten.teb.2008.0193 15 159 

  130. 10.1016/j.trsl.2019.08.010 Shahabipour, F., Ashammakhi, N., Oskuee, R.K., Bonakdar, S., Hoffman, T., Shokrgozar, M.A., and Khademhosseini, A. (2019). Key components of engineering vascularized 3-dimensional bioprinted bone constructs. Transl. Res. 

  131. 10.3390/jfb9010022 Jammalamadaka, U., and Tappa, K. (2018). Recent Advances in Biomaterials for 3D Printing and Tissue Engineering. J. Funct. Biomater., 9. 

  132. 10.3390/jfb9010017 Tappa, K., and Jammalamadaka, U. (2018). Novel Biomaterials Used in Medical 3D Printing Techniques. J. Funct. Biomater., 9. 

  133. Kolesky Three-dimensional bioprinting of thick vascularized tissues Proc. Natl. Acad. Sci. USA 2016 10.1073/pnas.1521342113 113 3179 

  134. Bertassoni Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs Lab Chip 2014 10.1039/C4LC00030G 14 2202 

  135. Zhang Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography Adv. Mater. 2012 10.1002/adma.201202024 24 4266 

  136. Tumbleston Additive manufacturing. Continuous liquid interface production of 3D objects Science 2015 10.1126/science.aaa2397 347 1349 

  137. Zhu Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture Biomaterials 2017 10.1016/j.biomaterials.2017.01.042 124 106 

  138. Araldi Hypoxia, HIFs and bone development Bone 2010 10.1016/j.bone.2010.04.606 47 190 

  139. Kuss Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells RSC Adv. 2017 10.1039/C7RA04372D 7 29312 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로