$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Giant proximity effect in single-crystalline MgB 2 bilayers 원문보기

Scientific reports, v.9, 2019년, pp.3315 -   

Jung, Soon-Gil (Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University, Suwon, 16419 Republic of Korea) ,  Pham, Duong (Department of Physics, Sungkyunkwan University, Suwon, 16419 Republic of Korea) ,  Park, Tae-Ho (Department of Physics, Sungkyunkwan University, Suwon, 16419 Republic of Korea) ,  Choi, Han-Yong (Department of Physics, Sungkyunkwan University, Suwon, 16419 Republic of Korea) ,  Seo, Jin Won (Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44-bus 2450, B-3001 Leuven, Belgium) ,  Kang, Won Nam (Department of Physics, Sungkyunkwan University, Suwon, 16419 Republic of Korea) ,  Park, Tuson (Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University, Suwon, 16419 Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Although giant proximity effect (GPE) can shed important information on understanding superconducting pairing mechanisms and superconducting electronics, reports on the GPE are few because the fabrication of the junctions with GPE is technologically difficult. Here, we report a GPE in the single-cry...

참고문헌 (44)

  1. 1. Meissner H Superconductivity of contacts with interposed barriers Phys. Rev. 1960 117 672 10.1103/PhysRev.117.672 

  2. 2. de Gennes PG Boundary effects in superconductors Rev. Mod. Phys. 1964 36 225 10.1103/RevModPhys.36.225 

  3. 3. Likharev KK Superconducting weak links Rev. Mod. Phys. 1979 51 101 10.1103/RevModPhys.51.101 

  4. 4. Makhlin Y Schön G Shnirman A Quantum-state engineering with Josephson-junction devices Rev. Mod. Phys. 2001 73 357 10.1103/RevModPhys.73.357 

  5. 5. Hilsch P Hilsch R Zur Supraleitung von Schichtpaketen aus Normal- und Supraleitern Z. Phys. 1964 180 10 10.1007/BF01380639 

  6. 6. Werthamer NR Theory of the superconducting transition temperature and energy gap function of superposed metal films Phys. Rev. 1963 132 2440 10.1103/PhysRev.132.2440 

  7. 7. Kircher CJ Superconducting proximity effect of Nb Phys. Rev. 1968 168 437 10.1103/PhysRev.168.437 

  8. 8. Hauser JJ Theuerer HC Werthamer NR Superconductivity in Cu and Pt by means of superimposed films with lead Phys. Rev. 1964 136 A637 10.1103/PhysRev.136.A637 

  9. 9. de Gennes PG Guyon E Superconductivity in “normal” metals Phys. Lett. 1963 3 168 10.1016/0031-9163(63)90401-3 

  10. 10. Kim J Doh Y-J Char K Doh H Choi H-Y Proximity effect in Nb/Au/CoFe trilayers Phys. Rev. B 2005 71 214519 10.1103/PhysRevB.71.214519 

  11. 11. Decca RS Drew HD Osquiguil E Maiorov B Guimpel J Anomalous proximity effect in underdoped YBa 2 Cu 3 O 6+ x Josephson junctions Phys. Rev. Lett. 2000 85 3708 10.1103/PhysRevLett.85.3708 11030987 

  12. 12. Marchand D Covaci L Berciu M Franz M Giant proximity effect in a phase-fluctuating superconductor Phys. Rev. Lett. 2008 101 097004 10.1103/PhysRevLett.101.097004 18851642 

  13. 13. Bozovic I Giant proximity effect in cuprate superconductors Phys. Rev. Lett. 2004 93 157002 10.1103/PhysRevLett.93.157002 15524925 

  14. 14. Covaci L Marsiglio F Proximity effect and Josephson current in clean strong/weak/strong superconducting trilayers Phys. Rev. B 2006 73 014503 10.1103/PhysRevB.73.014503 

  15. 15. Rout PK Budhani RC Interface superconductivity in La 1.48 Nd 0.4 Sr 0.12 CuO 4 /La 1.84 Sr 0.16 CuO 4 bilayers Phys. Rev. B 2010 82 024518 10.1103/PhysRevB.82.024518 

  16. 16. Cherkez V Proximity effect between two superconductors spatially resolved by scanning tunneling spectroscopy Phys. Rev. X 2014 4 011033 

  17. 17. Kim J Visualization of geometric influences on proximity effects in heterogeneous superconductor thin films Nat. Phys. 2012 8 464 10.1038/nphys2287 

  18. 18. Quintanilla J Capelle K Oliveira LN Comment on “Anomalous proximity effect in underdoped YBa 2 Cu 3 O 6+ x Josephson junctions” Phys. Rev. Lett. 2003 90 089703 10.1103/PhysRevLett.90.089703 12633473 

  19. 19. Kahlmann F Superconductor–normal–superconductor Josephson junctions fabricated by oxygen implantation into YBa 2 Cu 3 O 7-δ J. Appl. Phys. Lett. 1998 73 2354 10.1063/1.122459 

  20. 20. Cybart SA Planar MgB 2 Josephson junctions and series arrays via nanolithography and ion damage Appl. Phys. Lett. 2006 88 012509 10.1063/1.2162669 

  21. 21. Kang D-J Realization and properties of YBa 2 Cu 3 O 7−δ Josephson junctions by metal masked ion damage technique Appl. Phys. Lett. 2002 80 814 10.1063/1.1446998 

  22. 22. Sirena M Annealing of ion irradiated high T c Josephson junctions studied by numerical simulations J. Appl. Phys. 2009 105 023910 10.1063/1.3068178 

  23. 23. Sharafiev A HTS Josephson junctions arrays for high-frequency mixing Supercond. Sci. Technol. 2018 31 035003 10.1088/1361-6668/aa9d48 

  24. 24. Tachiki M Takahashi S Proximity effect in high-T c oxide superconductors Physics C 1992 191 363 10.1016/0921-4534(92)90932-3 

  25. 25. Cybart SA Large scale two-dimensional arrays of magnesium diboride superconducting quantum interference devices Appl. Phys. Lett. 2014 104 182604 10.1063/1.4876129 

  26. 26. Galan E Cunnane D Xi XX Chen K Sandwich-type MgB 2 /TiB 2 /MgB 2 Josephson junctions Supercond. Sci. Technol. 2014 27 065015 10.1088/0953-2048/27/6/065015 

  27. 27. The projected range of Co ions in the MgB 2 film was calculated using the SRIM software . ( www.srim.org/ ). 

  28. 28. Pogrebnyakov AV Thickness dependence of the properties of epitaxial thin films grown by hybrid physical-chemical vapor deposition Appl. Phys. Lett. 2003 82 4319 10.1063/1.1583852 

  29. 29. Zhang M Tateishi G Bergmann G Discrepancies between experiment and theory in the superconducting proximity effect Phys. Rev. B 2006 74 014506 10.1103/PhysRevB.74.014506 

  30. 30. Ferrando V Neutron irradiation effects on two gaps in MgB 2 Physica C 2007 456 144 10.1016/j.physc.2007.01.016 

  31. 31. Gerashenko AP Mikhalev KN Verkhovskii SV Karkin AE Goshchitskii BN Reduction in the electron density of states in superconducting MgB 2 disordered by neutron irradiation: 11 B and 25 Mg NMR estimates Phys. Rev. B 2002 65 132506 10.1103/PhysRevB.65.132506 

  32. 32. Vinod K Varghese N Syamaprasad U Superconductivity of MgB 2 in the BCS framework with emphasis on extrinsic effects on critical temperature Supercond. Sci. Technol. 2007 20 R31 10.1088/0953-2048/20/10/R01 

  33. 33. Putti M Vaglio R Rowell JM Radiation effects on MgB 2 : a review and a comparison with A15 superconductors Supercond. Sci. Technol. 2008 21 043001 10.1088/0953-2048/21/4/043001 

  34. 34. Putti M Intraband vs. interband scattering rate effects in neutron irradiated MgB 2 EPL 2007 77 57005 10.1209/0295-5075/77/57005 

  35. 35. Bergmann G Quantitative simulation of the superconducting proximity effect Phys. Rev. B 2005 72 134505 10.1103/PhysRevB.72.134505 

  36. 36. Garrett D Zhang M Bergmann G The superconducting proximity effect as a tool to investigate metal films and interfaces Eur. Phys. J. B 2004 39 199 10.1140/epjb/e2004-00182-1 

  37. 37. Tinkham, M. Introduction to Superconductivity , 2nd ed (McGraw- Hill, New York, 1996). 

  38. 38. Takahashi S Tachiki M Theory of the upper critical field of superconducting superlattices Phys. Rev. B 1986 33 4620 10.1103/PhysRevB.33.4620 

  39. 39. Takahashi S Tachiki M New phase diagram in superconducting superlattices Phys. Rev. B 1986 34 3162 10.1103/PhysRevB.34.3162 

  40. 40. Ferrando V Systematic study of disorder induced by neutron irradiation in MgB 2 thin films J. Appl. Phys. 2007 101 043903 10.1063/1.2405121 

  41. 41. Gurevich A Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors Phys. Rev. B 2003 67 184515 10.1103/PhysRevB.67.184515 

  42. 42. Hanna M Clean epitaxial MgB2 films fabricated by the ex situ annealing of chemical vapour deposition-grown B films in Mg vapour Supercond. Sci. Technol. 2008 21 045005 10.1088/0953-2048/21/4/045005 

  43. 43. Jung S-G Seong WK Kang WN Flux pinning mechanism in single-crystalline MgB 2 thin films J. Phys. Soc. Jpn. 2013 82 114712 10.7566/JPSJ.82.114712 

  44. 44. Seong WK Oh S Kang WN Perfect domain-lattice matching between MgB 2 and Al2O3: Single-crystal MgB 2 thin films grown on sapphire Jpn. J. Appl. Phys. 2012 51 083101 

LOADING...

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로