최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature communications, v.10 no.1, 2019년, pp.1392 -
Hou, Yang (Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China) , Qiu, Ming (Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, 430079 Wuhan, China) , Kim, Min Gyu (Beamline Division, Pohang Accelerator Laboratory, Pohang, Kyungbuk 37673 Republic of Korea) , Liu, Pan (WPI Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577 Japan) , Nam, Gyutae (Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea) , Zhang, Tao (Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, 01062 Dresden, Germany) , Zhuang, Xiaodong (Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, 01062 Dresden, Germany) , Yang, Bin (Key Laboratory of Biomass Che) , Cho, Jaephil , Chen, Mingwei , Yuan, Chris , Lei, Lecheng , Feng, Xinliang
Developing low-cost electrocatalysts to replace precious Ir-based materials is key for oxygen evolution reaction (OER). Here, we report atomically dispersed nickel coordinated with nitrogen and sulfur species in porous carbon nanosheets as an electrocatalyst exhibiting excellent activity and durabil...
1. Sivula K Van de Krol R Semiconducting materials for photoelectrochemical energy conversion Nat. Rev. Mater. 2016 1 15010 10.1038/natrevmats.2015.10
2. Roger I Shipman MA Symes MD Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting Nat. Rev. Chem. 2017 1 0003 10.1038/s41570-016-0003
3. Liu X Dai L Carbon-based metal-free catalysts Nat. Rev. Mater. 2016 1 16064 10.1038/natrevmats.2016.64
4. Nellist MR Laskowski FAL Lin F Mills TJ Boettcher SW Semiconductor–electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting ACC Chem. Res. 2016 49 733 740 10.1021/acs.accounts.6b00001 27035051
5. Yang J Wang D Han H Li C Roles of cocatalysts in photocatalysis and photoelectrocatalysis ACC Chem. Res. 2013 46 1900 1909 10.1021/ar300227e 23530781
6. Meng F Zhong H Bao D Yan J Zhang X In situ coupling of strung Co 4 N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-Air batteries J. Am. Chem. Soc. 2016 138 10226 10231 10.1021/jacs.6b05046 27463122
7. Hunter BM Gray HB Müller AM Earth-abundant heterogeneous water oxidation catalysts Chem. Rev. 2016 116 14120 14136 10.1021/acs.chemrev.6b00398 27797490
8. Kanan MW Nocera DG In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co 2+ Science 2008 321 1072 1075 10.1126/science.1162018 18669820
9. Luo J Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts Science 2014 345 1593 1596 10.1126/science.1258307 25258076
10. Suntivich J May KJ Gasteiger HA Goodenough JB Shao-Horn Y A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles Science 2011 334 1383 1385 10.1126/science.1212858 22033519
11. Zhou H Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Proc. Natl Acad. Sci. U.S.A. 2017 114 5607 5611 10.1073/pnas.1701562114 28507120
12. Walter C A molecular approach to manganese nitride acting as a high performance electrocatalyst in the oxygen evolution reaction Angew. Chem. Int. Ed. 2018 57 698 702 10.1002/anie.201710460
13. Zhao B A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution Nat. Commun. 2017 8 14586 10.1038/ncomms14586 28240282
14. Ng JWD Gold-supported cerium-doped NiO x catalysts for water oxidation Nat. Energy 2016 1 16053 10.1038/nenergy.2016.53
15. Chen L Dong X Wang Y Xia Y Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide Nat. Commun. 2016 7 11741 10.1038/ncomms11741 27199009
16. Cao J An ultrathin cobalt-based zeolitic imidazolate framework nanosheet array with a strong synergistic effect towards the efficient oxygen evolution reaction J. Mater. Chem. A 2018 6 18877 18883 10.1039/C8TA08337A
17. Liu R Liang F Zhou W Yang Y Zhu Z Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation Nano Energy 2015 12 115 122 10.1016/j.nanoen.2014.12.025
18. Seh ZW Combining theory and experiment in electrocatalysis: Insights into materials design Science 2017 355 eaad4998 10.1126/science.aad4998 28082532
19. Hou Y Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil Adv. Mater. 2017 29 1604480 10.1002/adma.201604480
20. Zhang J Zhao Z Xia Z Dai L A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions Nat. Nanotechnol. 2015 10 444 10.1038/nnano.2015.48 25849787
21. Fei H General synthesis and definitive structural identification of MN 4 C 4 single-atom catalysts with tunable electrocatalytic activities Nat. Catal. 2018 1 63 72 10.1038/s41929-017-0008-y
22. Han Y Wu Y Lai W Cao R Electrocatalytic water oxidation by a water-soluble nickel porphyrin complex at neutral pH with low overpotential Inorg. Chem. 2015 54 5604 5613 10.1021/acs.inorgchem.5b00924 25985258
23. Shearer J How does cyanide inhibit superoxide reductase? Insight from synthetic FeIIIN4S model complexes Proc. Natl Acad. Sci. U.S.A. 2003 100 3671 3676 10.1073/pnas.0637029100 12655068
24. Yang TC Comparing the electronic properties of the low-spin cyano-ferric [Fe(N 4 )(Cys)] active sites of superoxide reductase and p450cam using ENDOR spectroscopy and DFT calculations J. Am. Chem. Soc. 2006 128 16566 16578 10.1021/ja064656p 17177406
25. Stiebritz MT Reiher M A unifying structural and electronic concept for hmd and [FeFe] hydrogenase active sites Inorg. Chem. 2010 49 5818 5823 10.1021/ic902529c 20527808
26. Kulkarni A Siahrostami S Patel A Nørskov JK Understanding catalytic activity trends in the oxygen reduction reaction Chem. Rev. 2018 118 2302 2312 10.1021/acs.chemrev.7b00488 29405702
27. Cabán-Acevedo M Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide Nat. Mater. 2015 14 1245 10.1038/nmat4410 26366849
28. Hou Y Metal−organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe 3 C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions Adv. Energy Mater. 2014 4 1400337 10.1002/aenm.201400337
29. Lei C Efficient alkaline hydrogen evolution on atomically dispersed Ni–N x species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics Energy Environ. Sci. 2019 12 149 156 10.1039/C8EE01841C
30. Hou Y An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting Adv. Funct. Mater. 2015 25 872 882 10.1002/adfm.201403657
31. Yin J Ni-C-N nanosheets as catalyst for hydrogen evolution reaction J. Am. Chem. Soc. 2016 138 14546 14549 10.1021/jacs.6b09351 27775881
32. Yang HB Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst Sci. Adv. 2016 2 e1501122 10.1126/sciadv.1501122 27152333
33. Hu W CoNi 2 S 4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications ACS Appl. Mater. Interfaces 2014 6 19318 19326 10.1021/am5053784 25322454
34. Kannan AG Zhao J Jo SG Kang YS Kim DW Nitrogen and sulfur co-doped graphene counter electrodes with synergistically enhanced performance for dye-sensitized solar cells J. Mater. Chem. A 2014 2 12232 12239 10.1039/C4TA01927J
35. Hou Y Zuo F Dagg A Feng P A three-dimensional branched cobalt-doped α-Fe 2 O 3 nanorod/MgFe 2 O 4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation Angew. Chem. Int. Ed. 2013 52 1248 1252 10.1002/anie.201207578
36. Liang HW Molecular metal–N x centres in porous carbon for electrocatalytic hydrogen evolution Nat. Commun. 2015 6 7992 10.1038/ncomms8992 26250525
37. Lei C Fe–N 4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium Adv. Energy Mater. 2018 8 1801912 10.1002/aenm.201801912
38. Yan C Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO 2 electroreduction Energy Environ. Sci. 2018 11 1204 1210 10.1039/C8EE00133B
39. Yang HB Atomically dispersed Ni (I) as the active site for electrochemical CO 2 reduction Nat. Energy 2018 3 140 147 10.1038/s41560-017-0078-8
40. Zhao Z Li M Zhang L Dai L Xia Z Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries Adv. Mater. 2015 27 6834 6840 10.1002/adma.201503211 26418520
41. Jiao Y Zheng Y Davey K Qiao SZ Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene Nat. Energy 2016 1 16130 10.1038/nenergy.2016.130
42. Lee DH Lee WJ Lee WJ Kim SO Kim YH Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube Phys. Rev. Lett. 2011 106 175502 10.1103/PhysRevLett.106.175502 21635045
43. Shinde SS Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for eechargeable Zn-Air batteries ACS Nano 2017 11 347 357 10.1021/acsnano.6b05914 28001038
44. Pham TA Ping Y Galli G Modelling heterogeneous interfaces for solar water splitting Nat. Mater. 2017 16 401 10.1038/nmat4803 28068314
45. Vijselaar W Spatial decoupling of light absorption and catalytic activity of Ni-Mo-loaded high-aspect-ratio silicon microwire photocathodes Nat. Energy 2018 3 185 192 10.1038/s41560-017-0068-x
46. Hou Y Zuo F Dagg AP Liu J Feng P Branched WO 3 nanosheet array with layered C 3 N 4 heterojunctions and CoO x nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation Adv. Mater. 2014 26 5043 5049 10.1002/adma.201401032 24848321
47. Cho IS Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance Nat. Commun. 2013 4 1723 10.1038/ncomms2729 23591890
48. Rao PM Simultaneously efficient light absorption and charge separation in WO 3 /BiVO 4 core/shell nanowire photoanode for photoelectrochemical water oxidation Nano Lett. 2014 14 1099 1105 10.1021/nl500022z 24437363
49. Huang JW Zhang Y Ding Y Rationally designed/constructed CoO x /WO 3 anode for efficient photoelectrochemical water oxidation ACS Catal. 2017 7 1841 1845 10.1021/acscatal.7b00022
50. Abdi FF Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode Nat. Commun. 2013 4 2195 10.1038/ncomms3195 23893238
51. Kim TW Choi KS Nanoporous BiVO 4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting Science 2014 343 990 994 10.1126/science.1246913 24526312
52. Shi X Epitaxial growth of WO 3 nanoneedles achieved using a facile flame surface treatment process engineering of hole transport and water oxidation reactivity J. Mater. Chem. A 2018 6 19542 19546 10.1039/C8TA04081H
53. Ma M Dual oxygen and tungsten vacancies on a WO 3 photoanode for enhanced water oxidation Angew. Chem. Int. Ed. 2016 55 11819 11823 10.1002/anie.201605247
54. Shi X Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures Nat. Commun. 2014 5 4775 10.1038/ncomms5775 25179126
55. Jin B Solution-processed yolk-shell-shaped WO 3 /BiVO 4 heterojunction photoelectrodes for efficient solar water splitting J. Mater. Chem. A 2018 6 2585 2592 10.1039/C7TA08452H
56. Grigioni I Corti A Dozzi MV Selli E Photoactivity and stability of WO 3 /BiVO 4 photoanodes: effects of the contact electrolyte and of Ni/Fe oxyhydroxide protection J. Phys. Chem. C. 2018 122 13969 13978 10.1021/acs.jpcc.8b01112
57. Hou Y Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting Nano Lett. 2017 17 4202 4209 10.1021/acs.nanolett.7b01030 28586217
58. Chang X Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co 3 O 4 /BiVO 4 photoanodes J. Am. Chem. Soc. 2015 137 8356 8359 10.1021/jacs.5b04186 26091246
59. Hou Y Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting Energy Environ. Sci. 2016 9 478 483 10.1039/C5EE03440J
60. Gao MR An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation Nat. Commun. 2015 6 5982 10.1038/ncomms6982 25585911
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.