$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Potentials of porous materials for energy management in heat exchangers – A comprehensive review

Applied energy, v.243, 2019년, pp.206 - 232  

Rashidi, Saman (Department of Mechanical Engineering, Ferdowsi University of Mashhad) ,  Kashefi, Mohammad Hossein (Department of Mechanical Engineering, Semnan University) ,  Kim, Kyung Chun (School of Mechanical Engineering, Pusan National University) ,  Samimi-Abianeh, Omid (Department of Mechanical Engineering, Wayne State University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Heat exchangers are recognized as popular thermal devices with various and important applications in industrial energy systems. Many techniques were employed in order to manage the energy in these devices. Among these techniques, porous materials with high potentials for the energy managem...

주제어

참고문헌 (134)

  1. Leveque F, Robertson A. Pathways for heat: low carbon heat for buildings. A report by carbon connect report: future heat series part; 2014. 

  2. Appl Energy Gholap 84 12 1226 2007 10.1016/j.apenergy.2007.02.014 Design and multi-objective optimization of heat exchangers for refrigerators 

  3. Appl Energy Gomez-Garcia 190 510 2017 10.1016/j.apenergy.2016.12.140 Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage 

  4. Appl Energy Pandey 190 421 2017 10.1016/j.apenergy.2016.12.154 Optimization of ground heat exchangers for space heating and cooling applications using Taguchi method and utility concept 

  5. Appl Energy Tian 188 586 2017 10.1016/j.apenergy.2016.12.029 Research on a new type waste heat recovery gravity heat pipe exchanger 

  6. Appl Energy Luo 183 1317 2016 10.1016/j.apenergy.2016.09.077 Thermal enhancement by using grooves and ribs combined with delta-winglet vortex generator in a solar receiver heat exchanger 

  7. Appl Energy Corgnale 213 426 2018 10.1016/j.apenergy.2018.01.003 Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems 

  8. Appl Energy Vivekh 237 733 2019 10.1016/j.apenergy.2019.01.018 Performance evaluation of PVA-LiCl coated heat exchangers for next-generation of energy-efficient dehumidification 

  9. Appl Energy Siddiqui 239 41 2019 10.1016/j.apenergy.2019.01.203 A novel heat exchanger design procedure for photovoltaic panel cooling application: an analytical and experimental evaluation 

  10. Appl Energy Lia 151 178 2015 10.1016/j.apenergy.2015.04.070 Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): a perspective of time and space scales 

  11. Appl Energy Vivekh 229 778 2018 10.1016/j.apenergy.2018.08.041 Recent developments in solid desiccant coated heat exchangers - a review 

  12. Int J Heat Mass Transf Pongsoi 79 417 2014 10.1016/j.ijheatmasstransfer.2014.07.072 Heat transfer and flow characteristics of spiral fin-and-tube heat exchangers: a review 

  13. Renew Sustain Energy Rev Elmaaty 70 852 2017 10.1016/j.rser.2016.11.266 Corrugated plate heat exchanger review 

  14. Appl Therm Eng Bahiraei 133 137 2018 10.1016/j.applthermaleng.2018.01.041 Recent research contributions concerning use of nanofluids in heat exchangers: a critical review 

  15. Chem Eng Process Process Intensif Kumar 2017 A review of heat transfer and fluid flow mechanism in heat exchanger tube with inserts 

  16. Vafai 2015 Handbook of porous media 

  17. Renew Sustain Energy Rev Rashidi 91 229 2018 10.1016/j.rser.2018.03.092 Porous materials in building energy technologies-a review of the applications, modelling and experiments 

  18. De Paepe 2011 HEFAT 2011 The use of open cell metal foams in heat exchangers: possibilities and limitations 

  19. Heat Transfer Eng Han 33 12 991 2012 10.1080/01457632.2012.659613 A review of metal foam and metal matrix composites for heat exchangers and heat sinks 

  20. Heat Transf Eng Muley 33 1 42 2012 10.1080/01457632.2011.584817 Foam heat exchangers: a technology assessment 

  21. Renew Sustain Energy Rev Mahdi 41 715 2015 10.1016/j.rser.2014.08.040 Review of convection heat transfer and fluid flow in porous media with nanofluid 

  22. Appl Therm Eng Mao 71 1 104 2014 10.1016/j.applthermaleng.2014.06.035 Correlation studies of hydrodynamics and heat transfer in metal foam heat exchangers 

  23. Hafeez P. Heat transfer in metal foam heat exchangers at high temperature. A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Mechanical and Industrial Engineering Department University of Toronto; 2016. 

  24. Int J Heat Mass Transf Tuzovskaya 55 21-22 5769 2012 10.1016/j.ijheatmasstransfer.2012.05.073 Heat exchange performance of stainless steel and carbon foams modified with carbon nano fibers 

  25. Procedia Mater Sci Fernandez-Morales 4 371 2014 10.1016/j.mspro.2014.07.576 A conceptual design of energy exchange system for recovery of residual heat using aluminum foams 

  26. Heat Transf Eng Dai 33 1 21 2012 10.1080/01457632.2011.584812 A comparison of metal-foam heat exchangers to compact multilouver designs for air-side heat transfer applications 

  27. J Heat Transf Kim 122 3 572 2000 10.1115/1.1287170 Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger 

  28. Exp Therm Fluid Sci Sertkaya 36 86 2012 10.1016/j.expthermflusci.2011.08.008 Experimental investigation of thermal performance of aluminum finned heat exchangers and open-cell aluminum foam heat exchangers 

  29. Appl Therm Eng De Schampheleire 51 1-2 371 2013 10.1016/j.applthermaleng.2012.09.027 Thermal hydraulic performance of 10 PPI aluminium foam as alternative for louvered fins in an HVAC heat exchanger 

  30. Appl Therm Eng Bonaccorsi 61 2 848 2013 10.1016/j.applthermaleng.2013.04.053 Synthesis of SAPO-34 on graphite foams for adsorber heat exchangers 

  31. Procedia Mater Sci Huisseune 4 353 2014 10.1016/j.mspro.2014.07.572 Simulation of an aluminum foam heat exchanger using the volume averaging technique 

  32. Appl Therm Eng Lin 50 1 1201 2013 10.1016/j.applthermaleng.2012.08.047 A performance analysis of porous graphite foam heat exchangers in vehicles 

  33. Appl Therm Eng Odabaee 36 456 2012 10.1016/j.applthermaleng.2011.10.063 Metal foam heat exchangers for heat transfer augmentation from a tube bank 

  34. 2012 18th Australasia fluid mechanics conference 

  35. Int Commun Heat Mass Transf Boyd 39 3 363 2012 10.1016/j.icheatmasstransfer.2012.01.006 Air-cooled micro-porous heat exchangers for thermal management of fuel cells 

  36. Exp Therm Fluid Sci Odabaee 51 214 2013 10.1016/j.expthermflusci.2013.07.016 Metal foam heat exchangers for thermal management of fuel cell systems-An experimental study 

  37. Appl Therm Eng Chumpia 66 1-2 266 2014 10.1016/j.applthermaleng.2014.01.071 Performance evaluation of single tubular aluminium foam heat exchangers 

  38. Appl Therm Eng Chumpia 83 121 2015 10.1016/j.applthermaleng.2015.03.015 Performance evaluation of tubular aluminum foam heat exchangers in single row arrays 

  39. Appl Therm Eng Xu 66 1-2 43 2014 10.1016/j.applthermaleng.2014.01.053 Numerical investigation on self-coupling heat transfer in a counter-flow double-pipe heat exchanger filled with metallic foams 

  40. Int J Heat Mass Transf Chandran 81 404 2015 10.1016/j.ijheatmasstransfer.2014.10.053 Model of an integrated solar thermochemical reactor/reticulated ceramic foam heat exchanger for gas-phase heat recovery 

  41. Int J Heat Mass Transf Huisseune 89 1 2015 10.1016/j.ijheatmasstransfer.2015.05.013 Comparison of metal foam heat exchangers to a finned heat exchanger for low Reynolds number applications 

  42. Energy Kim 105 57 2016 10.1016/j.energy.2015.10.056 Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system 

  43. Ceram Int Yin 42 1 1713 2016 10.1016/j.ceramint.2015.09.128 Preparation of high porous silicon nitride foams with ultra-thin walls and excellent mechanical performance for heat exchanger application by using a protein foaming method 

  44. Energy Procedia Cicala 101 1103 2016 10.1016/j.egypro.2016.11.150 Experimental evaluation of fluid dynamic and thermal behaviors in compact heat exchanger with aluminum foam 

  45. Procedia CIRP Baiocco 62 518 2017 10.1016/j.procir.2016.06.035 Neural networks implementation for analysis and control of heat exchange process in a metal foam prototypal device 

  46. Energy Procedia Guarino 118 227 2017 10.1016/j.egypro.2017.07.015 Fabrication and characterization of an innovative heat exchanger with open cell aluminum foams 

  47. Exp Therm Fluid Sci Bamorovat Abadi 82 42 2017 10.1016/j.expthermflusci.2016.10.031 Experimental heat transfer and pressure drop in a metal-foam-filled tube heat exchanger 

  48. Int J Heat Mass Transf Lu 110 476 2017 10.1016/j.ijheatmasstransfer.2017.02.087 Analytical solutions of force convective heat transfer in plate heat exchangers partially filled with metal foams 

  49. Nawaz K, Bock J, Jacobi AM. Thermal-hydraulic performance of metal foam heat exchangers; 2012. 

  50. Appl Therm Eng Nawaz 119 222 2017 10.1016/j.applthermaleng.2017.03.056 Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions 

  51. Chem Eng Process Process Intensif Kouidri 121 162 2017 10.1016/j.cep.2017.08.014 Thermal and hydrodynamic performance of flow boiling through a heat exchanger filled with various metallic foam samples 

  52. Int J Heat Mass Transf Alhusseny 105 124 2017 10.1016/j.ijheatmasstransfer.2016.09.055 Rotating metal foam structures for performance enhancement of double-pipe heat exchangers 

  53. Appl Therm Eng Siavashi 138 465 2018 10.1016/j.applthermaleng.2018.04.066 Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams 

  54. Int J Heat Mass Transf Alvandifar 118 171 2018 10.1016/j.ijheatmasstransfer.2017.10.104 Partially metal foam wrapped tube bundle as a novel generation of air cooled heat exchangers 

  55. Exp Therm Fluid Sci Hamadouche 92 1 2018 10.1016/j.expthermflusci.2017.10.035 Enhancement of heat exchanger thermal hydraulic performance using aluminum foam 

  56. J Heat Transfer Hooman 134 9 092601 2012 10.1115/1.4006272 Impact of particulate deposition on the thermohydraulic performance of metal foam heat exchangers: a simplified theoretical model 

  57. Appl Energy Kuruneru 184 531 2016 10.1016/j.apenergy.2016.10.044 Numerical investigation of the temporal evolution of particulate fouling in metal foams for air-cooled heat exchangers 

  58. Int J Heat Mass Transf Kuruneru 115 43 2017 10.1016/j.ijheatmasstransfer.2017.07.027 A coupled finite volume & discrete element method to examine particulate foulant transport in metal foam heat exchangers 

  59. Chem Eng Sci Kuruneru 172 677 2017 10.1016/j.ces.2017.07.027 Analysis of particle-laden fluid flows, tortuosity and particle-fluid behaviour in metal foam heat exchangers 

  60. Chem Eng Sci Kuruneru 2018 10.1016/j.ces.2018.01.006 Coupled CFD-DEM simulation of oscillatory particle-laden fluid flow through a porous metal foam heat exchanger: mitigation of particulate fouling 

  61. Int J Heat Fluid Flow Bejan 16 1 16 1995 10.1016/0142-727X(94)00011-Z Cooling of stacks of plates shielded by porous screens 

  62. Sol Energy Thakur 74 4 319 2003 10.1016/S0038-092X(03)00153-1 Heat transfer and friction factor correlations for packed bed solar air heater for a low porosity system 

  63. Int J Heat Mass Transf Pavel 47 23 4939 2004 10.1016/j.ijheatmasstransfer.2004.06.014 An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media 

  64. Int J Heat Mass Transf Xu 50 5-6 1141 2007 10.1016/j.ijheatmasstransfer.2006.05.044 On the thermal performance of wire-screen meshes as heat exchanger material 

  65. Int J Heat Mass Transf Dyga 53 23-24 5499 2010 10.1016/j.ijheatmasstransfer.2010.07.007 Efficiency of heat transfer in heat exchangers with wire mesh packing 

  66. Appl Therm Eng Kurian 108 1158 2016 10.1016/j.applthermaleng.2016.07.172 Experimental investigation of near compact wire mesh heat exchangers 

  67. Int J Heat Mass Transf Fu 112 699 2017 10.1016/j.ijheatmasstransfer.2017.05.026 An experimental investigation on heat transfer enhancement of sprayed wire-mesh heat exchangers 

  68. Int J Therm Sci Dallaire 49 2 454 2010 10.1016/j.ijthermalsci.2009.07.027 Conceptual optimization of a rotary heat exchanger with a porous core 

  69. Int J Heat Mass Transf Minkowycz 42 18 3373 1999 10.1016/S0017-9310(99)00043-5 On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number 

  70. J Biosyst Eng Baruah 42 1 44 2017 10.5307/JBE.2017.42.1.044 Numerical modeling of regenerative rotary heat exchanger: a review 

  71. Int J Sci Res Jani 6 8 428 2018 A review on rotary heat exchangers 

  72. Int J Heat Mass Transf Wang 80 865 2015 10.1016/j.ijheatmasstransfer.2014.09.076 Optimal design of porous baffle to improve the flow distribution in the tube-side inlet of a shell and tube heat exchanger 

  73. Int J Refrig Lee 35 4 1176 2012 10.1016/j.ijrefrig.2011.11.015 Experimental investigation of capillary-assisted solution wetting and heat transfer using a micro-scale, porous-layer coating on horizontal-tube, falling-film heat exchanger 

  74. Int J Heat Mass Transf Bogan 68 141 2014 10.1016/j.ijheatmasstransfer.2013.09.005 Influences of solution subcooling, wall superheat and porous-layer coating on heat transfer in a horizontal-tube, falling-film heat exchanger 

  75. Appl Therm Eng Banerjee 75 889 2015 10.1016/j.applthermaleng.2014.10.033 Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery 

  76. Appl Therm Eng Wajs 93 1337 2016 10.1016/j.applthermaleng.2015.08.101 Influence of metallic porous microlayer on pressure drop and heat transfer of stainless steel plate heat exchanger 

  77. J Taiwan Inst Chem Eng Mehrizi 44 3 420 2013 10.1016/j.jtice.2012.12.018 Effect of fin position and porosity on heat transfer improvement in a plate porous media heat exchanger 

  78. Int J Heat Mass Transf Tomimura 47 21 4615 2004 10.1016/j.ijheatmasstransfer.2003.10.043 Experimental study on multi-layered type of gas-to-gas heat exchanger using porous media 

  79. Int J Therm Sci Nassab 48 8 1586 2009 10.1016/j.ijthermalsci.2008.12.014 Transient numerical analysis of a multi-layered porous heat exchanger including gas radiation effects 

  80. Int Commun Heat Mass Transf Soleimanikutanaei 95 92 2018 10.1016/j.icheatmasstransfer.2018.04.002 Modeling and simulation of cross-flow transport membrane condenser heat exchangers 

  81. J Membr Sci Yan 577 60 2019 10.1016/j.memsci.2019.01.049 Membrane heat exchanger for novel heat recovery in carbon capture 

  82. Appl Therm Eng Sabek 104 203 2016 10.1016/j.applthermaleng.2016.04.167 Numerical investigation of membrane based heat exchanger with partially blocked channels 

  83. Appl Therm Eng Sabek 130 211 2018 10.1016/j.applthermaleng.2017.11.019 Lattice Numerical investigation of heat and mass transfer in partially blocked membrane based heat exchanger: Effects of obstacles forms 

  84. Int J Therm Sci Mohamad 42 4 385 2003 10.1016/S1290-0729(02)00039-X Heat transfer enhancements in heat exchangers fitted with porous media Part I: constant wall temperature 

  85. Int J Heat Mass Transf Yang 52 13-14 2956 2009 10.1016/j.ijheatmasstransfer.2009.02.024 Numerical simulation of turbulent fluid flow and heat transfer characteristics in heat exchangers fitted with porous media 

  86. Int Commun Heat Mass Transf Heidary 39 1 112 2012 10.1016/j.icheatmasstransfer.2011.10.001 Enhancement of heat exchange in a wavy channel linked to a porous domain; a possible duct geometry for fuel cells 

  87. Energy Convers Manage Dehghan 85 264 2014 10.1016/j.enconman.2014.05.074 Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers 

  88. Energy Convers Manage Dehghan 91 259 2015 10.1016/j.enconman.2014.12.011 Temperature-dependent conductivity in forced convection of heat exchangers filled with porous media: a perturbation solution 

  89. Appl Math Comput Rong 276 367 2016 Lattice Boltzmann simulation of heat and fluid flow in 3D cylindrical heat exchanger with porous blocks 

  90. Heat Transf-Asian Res Akar 46 8 1363 2017 10.1002/htj.21279 Appropriate position of porous insert in a heat exchanger by thermohydraulic analysis 

  91. J Therm Anal Calorim Akbarzadeh 1 2018 First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert 

  92. Int J Heat Mass Transf Alkam 42 19 3609 1999 10.1016/S0017-9310(99)00033-2 Improving the performance of double-pipe heat exchangers by using porous substrates 

  93. Comput Aid Chem Eng Allouache 139 2004 10.1016/S1570-7946(04)80089-0 Entropy generation in a partly porous heat exchanger 

  94. J Appl Mech Allouache 73 1 60 2006 10.1115/1.1991865 Second law analysis in a partly porous double pipe heat exchanger 

  95. Int J Numer Meth Heat Fluid Flow Kahalerras 18 5 593 2008 10.1108/09615530810879738 Numerical analysis of heat transfer enhancement in a double pipe heat exchanger with porous fins 

  96. Energy Convers Manage Targui 49 11 3217 2008 10.1016/j.enconman.2008.02.010 Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures 

  97. Energy Convers Manage Targui 76 43 2013 10.1016/j.enconman.2013.07.022 Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow 

  98. World Acad Sci Eng Technol Int J Mech Aerosp Ind Mechatron Manuf Eng Targui 8 1546 2014 Analysis of a double pipe heat exchanger performance by use of porous baffles and nanofluids 

  99. Int J Heat Mass Transf Moraga 52 13-14 3353 2009 10.1016/j.ijheatmasstransfer.2009.01.010 Unsteady fluid mechanics and heat transfer study in a double-tube air-combustor heat exchanger with porous medium 

  100. Appl Therm Eng Chikh 104 222 2016 10.1016/j.applthermaleng.2016.05.069 Optimal performance of an annular heat exchanger with a porous insert for a turbulent flow 

  101. Appl Therm Eng Shirvan 109 761 2016 10.1016/j.applthermaleng.2016.08.116 Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow 

  102. Int J Therm Sci Shirvan 121 124 2017 10.1016/j.ijthermalsci.2017.07.008 Heat transfer and sensitivity analysis in a double pipe heat exchanger filled with porous medium 

  103. Energy Abdesslem 61 224 2013 10.1016/j.energy.2013.09.015 Radiative properties effects on unsteady natural convection inside a saturated porous medium Application for porous heat exchangers 

  104. Int J Heat Mass Transf Chen 108 2472 2017 10.1016/j.ijheatmasstransfer.2017.01.089 Transient thermal analysis of the coupled radiative and convective heat transfer in a porous filled tube exchanger at high temperatures 

  105. Renewable Energy Dehghan 74 448 2015 10.1016/j.renene.2014.08.044 Convection-radiation heat transfer in solar heat exchangers filled with a porous medium: homotopy perturbation method versus numerical analysis 

  106. Sol Energy Bovand 123 145 2016 10.1016/j.solener.2015.10.054 Heat transfer enhancement and pressure drop penalty in porous solar heaters: numerical simulations 

  107. Energy Convers Manage Rashidi 103 726 2015 10.1016/j.enconman.2015.07.019 Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis 

  108. J Thermophys Heat Transf Rashidi 31 2 390 2016 10.2514/1.T5003 Sensitivity analysis for entropy generation in porous solar heat exchangers by RSM 

  109. Appl Therm Eng Soltani 103 537 2016 10.1016/j.applthermaleng.2016.04.107 Convection-radiation heat transfer in solar heat exchangers filled with a porous medium: exact and shooting homotopy analysis solution 

  110. Int J Heat Mass Transf Jiang 44 5 1039 2001 10.1016/S0017-9310(00)00169-1 Thermal-hydraulic performance of small scale micro-channel and porous-media heat-exchangers 

  111. Appl Therm Eng Xu 116 516 2017 10.1016/j.applthermaleng.2016.12.090 Performance evaluation of multi-layered porous-medium micro heat exchangers with effects of slip condition and thermal non-equilibrium 

  112. Int J Heat Fluid Flow Antohe 17 6 594 1996 10.1016/S0142-727X(96)00085-9 Numerical characterization of micro heat exchangers using experimentally tested porous aluminum layers 

  113. Appl Therm Eng Bamorovat Abadi 99 790 2016 10.1016/j.applthermaleng.2016.01.156 Thermal performance of a 10-kW phase-change plate heat exchanger with metal foam filled channels 

  114. Appl Therm Eng Bamorovat Abadi 102 423 2016 10.1016/j.applthermaleng.2016.03.099 Experimental study on single-phase heat transfer and pressure drop of refrigerants in a plate heat exchanger with metal-foam-filled channels 

  115. Stud Surf Sci Catal Ismagilov 130 2759 2000 10.1016/S0167-2991(00)80888-5 Development and study of metal foam heat-exchanging tubular reactor: catalytic combustion of methane combined with methane steam reforming 

  116. Int J Heat Mass Transf Lu 49 15-16 2751 2006 10.1016/j.ijheatmasstransfer.2005.12.012 Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes 

  117. Int J Energy Res Mahdi 30 11 851 2006 10.1002/er.1188 Thermal performance of aluminium-foam CPU heat exchangers 

  118. Appl Therm Eng Yu 26 2 131 2006 10.1016/j.applthermaleng.2005.06.004 Carbon-foam finned tubes in air-water heat exchangers 

  119. Int J Heat Mass Transf Zhao 49 15 2762 2006 10.1016/j.ijheatmasstransfer.2005.12.014 Thermal analysis on metal-foam filled heat exchangers. Part II: Tube heat exchangers 

  120. Cryogenics Wang 47 1 19 2007 10.1016/j.cryogenics.2006.08.010 On the performance of copper foaming metal in the heat exchangers of pulse tube refrigerator 

  121. Int J Heat Mass Transf Mahjoob 51 15-16 3701 2008 10.1016/j.ijheatmasstransfer.2007.12.012 A synthesis of fluid and thermal transport models for metal foam heat exchangers 

  122. Int Commun Heat Mass Transf Ejlali 36 7 674 2009 10.1016/j.icheatmasstransfer.2009.03.001 Application of high porosity metal foams as air-cooled heat exchangers to high heat load removal systems 

  123. J Therm Sci Eng Appl Jazi 1 3 031008 2009 10.1115/1.4001049 Spray-formed, Metal-foam heat exchangers for high temperature applications 

  124. Int J Hydrogen Energy Mellouli 34 23 9393 2009 10.1016/j.ijhydene.2009.09.043 Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger 

  125. 2010 Defect and diffusion forum 

  126. Nawaz K, Bock J, Dai Z, Jacobi AM. Experimental studies to evaluate the use of metal foams in highly compact air-cooling heat exchangers; 2010. 

  127. 2010 14th International heat transfer conference 

  128. Int J Mech Sci Zhou 53 12 1069 2011 10.1016/j.ijmecsci.2011.08.012 Viscoelastic model to describe mechanical response of compact heat exchangers with plate-foam structure 

  129. 2012 6th European thermal sciences conference (Eurotherm-2012) 

  130. Fuel Process Technol Park 119 60 2014 10.1016/j.fuproc.2013.10.008 Cobalt catalyst coated metallic foam and heat-exchanger type reactor for Fischer-Tropsch synthesis 

  131. Energy Procedia Wang 142 3863 2017 10.1016/j.egypro.2017.12.289 Simulation and optimization of metal-foam tube banks for heat transfer enhancement of exhaust heat exchangers 

  132. 10.5772/intechopen.70451 Alhusseny ANM, Nasser AG, Al-zurf NM. High-porosity metal foams: potentials, applications, and formulations; 2018. 

  133. Int J Heat Mass Transf Kasaeian 107 778 2017 10.1016/j.ijheatmasstransfer.2016.11.074 Nanofluid flow and heat transfer in porous media: a review of the latest developments 

  134. Renew Sustain Energy Rev Rashidi 73 1198 2017 10.1016/j.rser.2017.02.028 A review on the applications of porous materials in solar energy systems 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로