$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effects of electromagnetic fields on osteoarthritis 원문보기

Biomedicine & pharmacotherapy = Biomédecine & pharmacothérapie, v.118, 2019년, pp.109282 -   

Wang, Tiantian (Department of Rehabilitation Medicine, West China Hospital, Sichuan University) ,  Xie, Wei (Department of Rehabilitation Medicine, West China Hospital, Sichuan University) ,  Ye, Wenwen (Department of Rehabilitation Medicine, West China Hospital, Sichuan University) ,  He, Chengqi (Department of Rehabilitation Medicine, West China Hospital, Sichuan University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Osteoarthritis (OA), characterized by joint malfunction and chronic disability, is the most common form of arthritis. The pathogenesis of OA is unclear, yet studies have shown that it is due to an imbalance between the synthesis and decomposition of chondrocytes, cell matrices and subchond...

주제어

참고문헌 (96)

  1. Pain Med Henderson 14 1346 2013 10.1111/pme.12195 Prevalence, causes, severity, impact, and management of chronic pain in Australian general practice patients 

  2. Am. J. Public Health Guccione 84 351 1994 10.2105/AJPH.84.3.351 The effects of specific medical conditions on the functional limitations of elders in the Framingham study 

  3. Ann. Rheum. Dis. Cross 73 1323 2014 10.1136/annrheumdis-2013-204763 The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study 

  4. Osteoarthritis Cartilage McAllister 26 612 2018 10.1016/j.joca.2018.02.901 NLRP3 as a potentially novel biomarker for the management of osteoarthritis 

  5. Arthritis Care Res (Hoboken) Hochberg 64 465 2012 10.1002/acr.21596 American College of rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee 

  6. Eur. J. Phys. Rehabil. Med. Goksen 52 431 2016 Magnetic resonance therapy for knee osteoarthritis: a randomized, double blind placebo controlled trial 

  7. Oncotarget Liu 8 1110 2017 10.18632/oncotarget.13584 The change of HCN1/HCN2 mRNA expression in peripheral nerve after chronic constriction injury induced neuropathy followed by pulsed electromagnetic field therapy 

  8. Bioelectromagnetics Liu 34 323 2013 10.1002/bem.21770 Pulsed electromagnetic fields on postmenopausal osteoporosis in Southwest China: a randomized, active-controlled clinical trial 

  9. J. Orthop. Res. Ciombor 20 40 2002 10.1016/S0736-0266(01)00071-7 Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins 

  10. J. Cell. Physiol. Ongaro 227 2461 2012 10.1002/jcp.22981 Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts 

  11. Clin. Rheumatol. Ozguclu 29 927 2010 10.1007/s10067-010-1453-z Additional effect of pulsed electromagnetic field therapy on knee osteoarthritis treatment: a randomized, placebo-controlled study 

  12. Crit. Rev. Biomed. Eng. Bassett 17 451 1989 Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs) 

  13. Mutat. Res. Juutilainen 387 165 1997 10.1016/S1383-5742(97)00036-7 Genotoxic, carcinogenic and teratogenic effects of electromagnetic fields. Introduction and overview 

  14. Rheumatol. (Oxford) Ryang We 52 815 2013 10.1093/rheumatology/kes063 Effects of pulsed electromagnetic field on knee osteoarthritis: a systematic review 

  15. Osteoarthritis Cartilage Negm 21 1281 2013 10.1016/j.joca.2013.06.015 Efficacy of low frequency pulsed subsensory threshold electrical stimulation vs placebo on pain and physical function in people with knee osteoarthritis: systematic review with meta-analysis 

  16. BMC Musculoskelet. Disord. McCarthy 7 51 2006 10.1186/1471-2474-7-51 Pulsed electromagnetic energy treatment offers no clinical benefit in reducing the pain of knee osteoarthritis: a systematic review 

  17. Rheumatol. (Oxford) Bagnato 55 755 2016 10.1093/rheumatology/kev426 Pulsed electromagnetic fields in knee osteoarthritis: a double blind, placebo-controlled, randomized clinical trial 

  18. Osteoarthritis Cartilage Thamsborg 13 575 2005 10.1016/j.joca.2005.02.012 Treatment of knee osteoarthritis with pulsed electromagnetic fields: a randomized, double-blind, placebo-controlled study 

  19. Rheumatol. Int. Nelson 33 2169 2013 10.1007/s00296-012-2366-8 Non-invasive electromagnetic field therapy produces rapid and substantial pain reduction in early knee osteoarthritis: a randomized double-blind pilot study 

  20. Z. Orthop. Ihre. Grenzgeb. Fischer 143 544 2005 10.1055/s-2005-836830 [Adjuvant treatment of knee osteoarthritis with weak pulsing magnetic fields. Results of a placebo-controlled trial prospective clinical trial] 

  21. Curr. Med. Res. Opin. Pipitone 17 190 2001 10.1185/03007990152673828 Magnetic pulse treatment for knee osteoarthritis: a randomised, double-blind, placebo-controlled study 

  22. J. Rheumatol. Trock 20 456 1993 A double-blind trial of the clinical effects of pulsed electromagnetic fields in osteoarthritis 

  23. Rheumatol. Int. Ay 29 663 2009 10.1007/s00296-008-0754-x The effects of pulsed electromagnetic fields in the treatment of knee osteoarthritis: a randomized, placebo-controlled trial 

  24. Pain Moffett 67 121 1996 10.1016/0304-3959(96)03100-4 A placebo controlled double blind trial to evaluate the effectiveness of pulsed short wave therapy for osteoarthritic hip and knee pain 

  25. Clin. Rehabil. Laufer 19 255 2005 10.1191/0269215505cr864oa Effect of pulsed short-wave diathermy on pain and function of subjects with osteoarthritis of the knee: a placebo-controlled double-blind clinical trial 

  26. Jt. Bone Spine Callaghan 72 150 2005 10.1016/j.jbspin.2004.03.010 An evaluation of pulsed shortwave on knee osteoarthritis using radioleucoscintigraphy: a randomised, double blind, controlled trial 

  27. J. Orthop. Res. Fini 23 899 2005 10.1016/j.orthres.2005.01.008 Pulsed electromagnetic fields reduce knee osteoarthritic lesion progression in the aged dunkin hartley guinea pig 

  28. Osteoarthritis Cartilage Ciombor 11 455 2003 10.1016/S1063-4584(03)00083-9 Modification of osteoarthritis by pulsed electromagnetic field--a morphological study 

  29. Biomed. Pharmacother. Fini 62 709 2008 10.1016/j.biopha.2007.03.001 Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged dunkin hartley guinea pigs 

  30. Bioelectromagnetics Kumar 26 431 2005 10.1002/bem.20100 Optimization of pulsed electromagnetic field therapy for management of arthritis in rats 

  31. Life Sci. Selvam 80 2403 2007 10.1016/j.lfs.2007.03.019 Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity 

  32. Biochem. Biophys. Res. Commun. Chandrasekhar 157 1352 1988 10.1016/S0006-291X(88)81024-6 Transforming growth factor-beta is a potent inhibitor of IL-1 induced protease activity and cartilage proteoglycan degradation 

  33. Ann. Rheum. Dis. van Beuningen 53 593 1994 10.1136/ard.53.9.593 In vivo protection against interleukin-1-induced articular cartilage damage by transforming growth factor-beta 1: age-related differences 

  34. Lab. Invest. van Beuningen 71 279 1994 Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint 

  35. Jt. Bone Spine Guo 78 604 2011 10.1016/j.jbspin.2011.01.009 Comparing different physical factors on serum TNF-alpha levels, chondrocyte apoptosis, caspase-3 and caspase-8 expression in osteoarthritis of the knee in rabbits 

  36. Int. Orthop. Li 35 1875 2011 10.1007/s00264-011-1245-3 Effects of pulsed electromagnetic fields on cartilage apoptosis signalling pathways in ovariectomised rats 

  37. PLoS One Yang 8 2013 Matrix metalloproteases and tissue inhibitors of metalloproteinases in medial plica and pannus-like tissue contribute to knee osteoarthritis progression 

  38. Rheumatol. Int. Luo 29 927 2009 10.1007/s00296-008-0782-6 Pulse electromagnetic fields effects on serum E2 levels, chondrocyte apoptosis, and matrix metalloproteinase-13 expression in ovariectomized rats 

  39. J. Biomech. Eng. Chao 122 261 2000 10.1115/1.429661 Chondrocyte translocation response to direct current electric fields 

  40. Calcif. Tissue Int. Xia 95 495 2014 10.1007/s00223-014-9917-9 Osteoarthritis pathogenesis: a review of molecular mechanisms 

  41. Ann. Rheum. Dis. Fioravanti 61 1032 2002 10.1136/ard.61.11.1032 Biochemical and morphological study of human articular chondrocytes cultivated in the presence of pulsed signal therapy 

  42. Med. Biol. Eng. Comput. Jahns 45 917 2007 10.1007/s11517-007-0216-8 The effect of pulsed electromagnetic fields on chondrocyte morphology 

  43. Rheumatol. Int. Schmidt-Rohlfing 28 971 2008 10.1007/s00296-008-0565-0 Effects of pulsed and sinusoid electromagnetic fields on human chondrocytes cultivated in a collagen matrix 

  44. Orthopedics Sadoghi 36 e360 2013 10.3928/01477447-20130222-27 Effect of pulsed electromagnetic fields on the bioactivity of human osteoarthritic chondrocytes 

  45. Bioelectromagnetics Wang 36 35 2015 10.1002/bem.21882 Pulsed electromagnetic field may accelerate in vitro endochondral ossification 

  46. Connect. Tissue Res. De Mattei 42 269 2001 10.3109/03008200109016841 Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation 

  47. Indian J. Orthop. Anbarasan 50 87 2016 10.4103/0019-5413.173522 Low dose short duration pulsed electromagnetic field effects on cultured human chondrocytes: an experimental study 

  48. J. Biomed. Mater. Res. A Chang 92 843 2010 Can low frequency electromagnetic field help cartilage tissue engineering? 

  49. Phys. Ther. Sport Zhou 24 32 2017 10.1016/j.ptsp.2016.10.003 Pulsed electromagnetic field ameliorates cartilage degeneration by inhibiting mitogen-activated protein kinases in a rat model of osteoarthritis 

  50. J. Orthop. Res. Fitzsimmons 26 854 2008 10.1002/jor.20590 A pulsing electric field (PEF) increases human chondrocyte proliferation through a transduction pathway involving nitric oxide signaling 

  51. Bioelectromagnetics Ongaro 32 543 2011 10.1002/bem.20663 Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants 

  52. J. Orthop. Res. Bonassar 19 11 2001 10.1016/S0736-0266(00)00004-8 The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I 

  53. In Vivo Esposito 27 495 2013 Differentiation of human umbilical cord-derived mesenchymal stem cells, WJ-MSCs, into chondrogenic cells in the presence of pulsed electromagnetic fields 

  54. J. Appl. Physiol. Chen 2013 114 647 1985 Electromagnetic fields enhance chondrogenesis of human adipose-derived stem cells in a chondrogenic microenvironment in vitro 

  55. Tissue Eng. A Amin 20 1612 2014 10.1089/ten.tea.2013.0307 Stimulation of chondrogenic differentiation of adult human bone marrow-derived stromal cells by a moderate-strength static magnetic field 

  56. Eklem Hastalik. Cerrahisi Martel-Pelletier 21 2 2010 Is osteoarthritis a disease involving only cartilage or other articular tissues? 

  57. Osteoarthritis Cartilage Tesch 12 349 2004 10.1016/j.joca.2004.01.002 Endogenously produced adenosine regulates articular cartilage matrix homeostasis: enzymatic depletion of adenosine stimulates matrix degradation 

  58. Am. J. Vet. Res. Benton 63 204 2002 10.2460/ajvr.2002.63.204 Effects of adenosine on bacterial lipopolysaccharide- and interleukin 1-induced nitric oxide release from equine articular chondrocytes 

  59. Osteoarthritis Cartilage Mistry 14 486 2006 10.1016/j.joca.2005.11.015 The role of adenosine in chondrocyte death in murine osteoarthritis and in a murine chondrocyte cell line 

  60. Orthopedics Chang 34 20 2011 10.3928/01477447-20101123-10 Low-frequency electromagnetic field exposure accelerates chondrocytic phenotype expression on chitosan substrate 

  61. Ann. Rheum. Dis. Bobacz 65 949 2006 10.1136/ard.2005.037622 Effect of pulsed electromagnetic fields on proteoglycan biosynthesis of articular cartilage is age dependent 

  62. Osteoarthritis Cartilage De Mattei 15 163 2007 10.1016/j.joca.2006.06.019 Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields 

  63. Biochem. Biophys. Res. Commun. Brighton 342 556 2006 10.1016/j.bbrc.2006.01.171 Up-regulation of matrix in bovine articular cartilage explants by electric fields 

  64. J. Bone Jt. Surg. Am. Brighton 90 833 2008 10.2106/JBJS.F.01437 The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants 

  65. BMC Musculoskelet. Disord Veronesi 16 308 2015 10.1186/s12891-015-0760-6 Experimentally induced cartilage degeneration treated by pulsed electromagnetic field stimulation; An in vitro study on bovine cartilage 

  66. Osteoarthritis Cartilage De Mattei 12 793 2004 10.1016/j.joca.2004.06.012 Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage 

  67. Tissue Eng. B Rev. Fini 19 353 2013 10.1089/ten.teb.2012.0501 Functional tissue engineering in articular cartilage repair: is there a role for electromagnetic biophysical stimulation? 

  68. Osteoarthritis Cartilage Tesch 10 34 2002 10.1053/joca.2001.0479 Chondrocytes respond to adenosine via a(2)receptors and activity is potentiated by an adenosine deaminase inhibitor and a phosphodiesterase inhibitor 

  69. Ann. N. Y. Acad. Sci. Elenkov 917 94 2000 10.1111/j.1749-6632.2000.tb05374.x Neuroendocrine regulation of IL-12 and TNF-alpha/IL-10 balance. Clinical implications 

  70. Arthritis Rheum. Bar-Yehuda 60 3061 2009 10.1002/art.24817 Induction of an antiinflammatory effect and prevention of cartilage damage in rat knee osteoarthritis by CF101 treatment 

  71. Osteoarthritis Cartilage Varani 16 292 2008 10.1016/j.joca.2007.07.004 Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields 

  72. PLoS One Vincenzi 8 2013 10.1371/journal.pone.0065561 Pulsed electromagnetic fields increased the anti-inflammatory effect of a(2)a and a(3) adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts 

  73. Bioelectromagnetics Shen 31 113 2010 Pulsed electromagnetic fields stimulation affects BMD and local factor production of rats with disuse osteoporosis 

  74. J. Tissue Eng. Regen. Med. Ongaro 9 E229 2015 10.1002/term.1671 Electromagnetic fields counteract IL-1beta activity during chondrogenesis of bovine mesenchymal stem cells 

  75. Osteoarthritis Cartilage Mohan 21 1595 2013 10.1016/j.joca.2013.06.020 Pre-emptive, early, and delayed alendronate treatment in a rat model of knee osteoarthritis: effect on subchondral trabecular bone microarchitecture and cartilage degradation of the tibia, bone/cartilage turnover, and joint discomfort 

  76. Osteoarthritis Cartilage Chen 23 2174 2015 10.1016/j.joca.2015.07.012 Bone turnover and articular cartilage differences localized to subchondral cysts in knees with advanced osteoarthritis 

  77. J. Orthop. Res. Veronesi 32 677 2014 10.1002/jor.22584 In vivo effect of two different pulsed electromagnetic field frequencies on osteoarthritis 

  78. Bioelectromagnetics Yang 39 89 2018 10.1002/bem.22106 Pulsed electromagnetic field improves subchondral bone microstructure in knee osteoarthritis rats through a Wnt/beta-catenin signaling-associated mechanism 

  79. Bioelectromagnetics Yang 38 227 2017 10.1002/bem.22028 Pulsed electromagnetic field at different stages of knee osteoarthritis in rats induced by low-dose monosodium iodoacetate: effect on subchondral trabecular bone microarchitecture and cartilage degradation 

  80. J. Cell. Physiol. Bourguignon 140 379 1989 10.1002/jcp.1041400224 Electric stimulation of human fibroblasts causes an increase in Ca2+ influx and the exposure of additional insulin receptors 

  81. Bioelectromagnetics De Mattei 20 177 1999 10.1002/(SICI)1521-186X(1999)20:3<177::AID-BEM4>3.0.CO;2-# Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro 

  82. Calcif. Tissue Int. Pezzetti 65 396 1999 10.1007/s002239900720 Effects of pulsed electromagnetic fields on human chondrocytes: an in vitro study 

  83. J. Orthop. Res. Aaron 14 582 1996 10.1002/jor.1100140412 Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool 

  84. FASEB J. Cadossi 6 2667 1992 10.1096/fasebj.6.9.1612290 Lymphocytes and low-frequency electromagnetic fields 

  85. Bioelectromagnetics Aaron 20 453 1999 10.1002/(SICI)1521-186X(199910)20:7<453::AID-BEM7>3.0.CO;2-H Power frequency fields promote cell differentiation coincident with an increase in transforming growth factor-beta(1) expression 

  86. Br. J. Pharmacol. Varani 136 57 2002 10.1038/sj.bjp.0704695 Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils 

  87. Bioelectromagnetics Chang 24 431 2003 10.1002/bem.10118 Effects of different intensities of extremely low frequency pulsed electromagnetic fields on formation of osteoclast-like cells 

  88. J Orthop Surg Res Kuyinu 11 19 2016 10.1186/s13018-016-0346-5 Animal models of osteoarthritis: classification, update, and measurement of outcomes 

  89. Bioelectromagnetics Gwechenberger 27 365 2006 10.1002/bem.20217 Interference of programmed electromagnetic stimulation with pacemakers and automatic implantable cardioverter defibrillators 

  90. Br. J. Cancer Ahlbom 83 692 2000 10.1054/bjoc.2000.1376 A pooled analysis of magnetic fields and childhood leukaemia 

  91. Br. J. Cancer Kheifets 103 1128 2010 10.1038/sj.bjc.6605838 Pooled analysis of recent studies on magnetic fields and childhood leukaemia 

  92. PLoS One Crocetti 8 2013 10.1371/journal.pone.0072944 Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability 

  93. Cancer Cell Int. Lin 14 1 2014 10.1186/1475-2867-14-1 The antiproliferative effect of C2-ceramide on lung cancer cells through apoptosis by inhibiting akt and NFkappaB 

  94. Cell. Physiol. Biochem. Morabito 26 947 2010 10.1159/000324003 Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation 

  95. Am. J. Epidemiol. Kleinerman 161 136 2005 10.1093/aje/kwi013 Self-reported electrical appliance use and risk of adult brain tumors 

  96. Eur. J. Cancer Prev. Abel 16 243 2007 10.1097/01.cej.0000228397.22611.d0 Use of electric blankets and association with prevalence of endometrial cancer 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로