$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Improvement of Euglena gracilis Paramylon Production through a Cocultivation Strategy with the Indole-3-Acetic Acid-Producing Bacterium Vibrio natriegens 원문보기

Applied and environmental microbiology, v.85 no.19, 2019년, pp.e01548-19 - e01548-19  

Kim, Jee Young (Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea) ,  Oh, Jeong-Joo (Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea) ,  Jeon, Min Seo (Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea) ,  Kim, Gyu-Hyeok (Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea) ,  Choi, Yoon-E (Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea)

Abstract AI-Helper 아이콘AI-Helper

Euglena gracilis has attracted special interest due to its ability to excessively accumulate paramylon. Paramylon is a linear β-1,3-glucan polysaccharide that is the principal polymer for energy storage in E. gracilis. The polysaccharide features high bioactive functionality in the immune sys...

주제어

참고문헌 (45)

  1. Mata, Teresa M., Martins, António A., Caetano, Nidia. S.. Microalgae for biodiesel production and other applications: A review. Renewable & sustainable energy reviews, vol.14, no.1, 217-232.

  2. 10.1007/978-3-319-54910-1_14 

  3. Rodríguez-Zavala, J.S., Ortiz-Cruz, M.A., Mendoza-Hernández, G., Moreno-Sánchez, R.. Increased synthesis of &agr;-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. Journal of applied microbiology, vol.109, no.6, 2160-2172.

  4. 10.1007/978-3-319-54910-1_13 

  5. 10.1002/(SICI)1097-0290(19970120)53:2<185::AID-BIT8>3.0.CO;2-K 

  6. Šantek, Bozˇidar, Friehs, Karl, Lotz, Martin, Flaschel, Erwin. Production of paramylon, a β‐1,3‐glucan, by heterotrophic growth of Euglena gracilis on potato liquor in fed‐batch and repeated‐batch mode of cultivation. Engineering in life sciences, vol.12, no.1, 89-94.

  7. Stier, Heike, Ebbeskotte, Veronika, Gruenwald, Joerg. Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutrition journal, vol.13, no.1, 38-38.

  8. Akramienė, Dalia, Kondrotas, Anatolijus, Didžiapetrienė, Janina, Kėvelaitis, Egidijus. Effects of ß-glucans on the immune system. Medicina, vol.43, no.8, 597-.

  9. Volman, J.J., Ramakers, J.D., Plat, J.. Dietary modulation of immune function by β-glucans. Physiology & behavior, vol.94, no.2, 276-284.

  10. Yamada, Koji, Suzuki, Hideyuki, Takeuchi, Takuto, Kazama, Yusuke, Mitra, Sharbanee, Abe, Tomoko, Goda, Keisuke, Suzuki, Kengo, Iwata, Osamu. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Scientific reports, vol.6, 26327-.

  11. Barsanti, Laura, Vismara, Rosa, Passarelli, Vincenzo, Gualtieri, Paolo. Paramylon (&bgr;-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. Journal of applied phycology, vol.13, no.1, 59-65.

  12. Voß, Ute, Bishopp, Anthony, Farcot, Etienne, Bennett, Malcolm J.. Modelling hormonal response and development . Trends in plant science, vol.19, no.5, 311-319.

  13. Lu, Yandu, Xu, Jian. Phytohormones in microalgae: a new opportunity for microalgal biotechnology?. Trends in plant science, vol.20, no.5, 273-282.

  14. Dao, Guo-Hua, Wu, Guang-Xue, Wang, Xiao-Xiong, Zhuang, Lin-Lan, Zhang, Tian-Yuan, Hu, Hong-Ying. Enhanced growth and fatty acid accumulation of microalgae Scenedesmus sp. LX1 by two types of auxin. Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies, vol.247, 561-567.

  15. Noble, Adam, Kisiala, Anna, Galer, Amy, Clysdale, Donna, Emery, R.J. Neil. Euglena gracilis(Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous application singly and in combination with other growth regulators. European journal of phycology, vol.49, no.2, 244-254.

  16. Amin, S. A., Hmelo, L. R., van Tol, H. M., Durham, B. P., Carlson, L. T., Heal, K. R., Morales, R. L., Berthiaume, C. T., Parker, M. S., Djunaedi, B., Ingalls, A. E., Parsek, M. R., Moran, M. A., Armbrust, E. V.. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature, vol.522, no.7554, 98-101.

  17. Croft, Martin T., Lawrence, Andrew D., Raux-Deery, Evelyne, Warren, Martin J., Smith, Alison G.. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, vol.438, no.7064, 90-93.

  18. Toyama, Tadashi, Kasuya, Mari, Hanaoka, Tsubasa, Kobayashi, Naoto, Tanaka, Yasuhiro, Inoue, Daisuke, Sei, Kazunari, Morikawa, Masaaki, Mori, Kazuhiro. Growth promotion of three microalgae, Chlamydomonas reinhardtii , Chlorella vulgaris and Euglena gracilis , by in situ indigenous bacteria in wastewater effluent. Biotechnology for biofuels, vol.11, 176-.

  19. Grimm, P., Risse, J.M., Cholewa, D., Muller, J.M., Beshay, U., Friehs, K., Flaschel, E.. Applicability of Euglena gracilis for biorefineries demonstrated by the production of α-tocopherol and paramylon followed by anaerobic digestion. Journal of biotechnology, vol.215, 72-79.

  20. Hanashima, Shinya, Ikeda, Akemi, Tanaka, Hiroshi, Adachi, Yoshiyuki, Ohno, Naohito, Takahashi, Takashi, Yamaguchi, Yoshiki. NMR study of short β(1-3)-glucans provides insights into the structure and interaction with Dectin-1. Glycoconjugate journal, vol.31, no.3, 199-207.

  21. Williams, D.L., McNamee, R.B., Jones, E.L., Pretus, H.A., Ensley, H.E., Browder, I.W., Di Luzio, N.R.. A method for the solubilization of a (1→3)-β-d-glucan isolated from Saccharomyces cerevisiae. Carbohydrate research, vol.219, 203-213.

  22. 10.3978/j.issn.2305-5839.2014.02.07 

  23. Intranuclear bacteria: inside the cellular control center of eukaryotes. Trends in cell biology, vol.25, no.6, 339-346.

  24. Seymour, Justin R., Amin, Shady A., Raina, Jean-Baptiste, Stocker, Roman. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nature microbiology, vol.2, 17065-.

  25. Sukweenadhi, Johan, Kim, Yeon-Ju, Kang, Chang Ho, Farh, Mohamed El-Agamy, Nguyen, Ngoc-Lan, Hoang, Van-An, Choi, Eul-Su, Yang, Deok-Chun. Sphingomonas panaciterrae sp. nov., a plant growth-promoting bacterium isolated from soil of a ginseng field. Archives of microbiology, vol.197, no.8, 973-981.

  26. Kim, Yeon-Ju, Sukweenadhi, Johan, Seok, Ji Woong, Kang, Chang Ho, Choi, Eul-Su, Subramaniyam, Sathiyamoorthy, Yang, Deok Chun. Complete genome sequence of Paenibacillus yonginensis DCY84 T , a novel plant Symbiont that promotes growth via induced systemic resistance. Standards in genomic sciences, vol.12, 63-.

  27. Tsavkelova, E. A., Cherdyntseva, T. A., Netrusov, A. I.. Auxin production by bacteria associated with orchid roots. Microbiology, vol.74, no.1, 46-53.

  28. Wang, Xiulin, Gong, Liangyu, Liang, Shengkang, Han, Xiurong, Zhu, Chenjian, Li, Yanbin. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful algae, vol.4, no.2, 433-443.

  29. Weinstock, Matthew T, Hesek, Eric D, Wilson, Christopher M, Gibson, Daniel G. Vibrio natriegens as a fast-growing host for molecular biology. Nature methods, vol.13, no.10, 849-851.

  30. Zhang, Z., Ji, H., Gong, G., Zhang, X., Tan, T.. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields. Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies, vol.164, 93-99.

  31. Cho, D.H., Ramanan, R., Heo, J., Lee, J., Kim, B.H., Oh, H.M., Kim, H.S.. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies, vol.175, 578-585.

  32. Padmaperuma, Gloria, Kapoore, Rahul Vijay, Gilmour, Daniel James, Vaidyanathan, Seetharaman. Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Critical reviews in biotechnology, vol.38, no.5, 690-703.

  33. Paul, Carsten, Mausz, Michaela A., Pohnert, Georg. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics : official journal of the Metabolomics Society, vol.9, no.2, 349-359.

  34. Santner, Aaron, Calderon-Villalobos, Luz Irina A, Estelle, Mark. Plant hormones are versatile chemical regulators of plant growth. Nature chemical biology, vol.5, no.5, 301-307.

  35. Kenrick, Paul, Crane, Peter R.. The origin and early evolution of plants on land. Nature, vol.389, no.6646, 33-39.

  36. Tate, John J., Gutierrez-Wing, M. Teresa, Rusch, Kelly A., Benton, Michael G.. The Effects of Plant Growth Substances and Mixed Cultures on Growth and Metabolite Production of Green Algae Chlorella sp.: A Review. Journal of plant growth regulation, vol.32, no.2, 417-428.

  37. Park, Won-Kun, Yoo, Gursong, Moon, Myounghoon, Kim, Chul Woong, Choi, Yoon-E, Yang, Ji-Won. Phytohormone Supplementation Significantly Increases Growth of Chlamydomonas reinhardtii Cultivated for Biodiesel Production. Applied biochemistry and biotechnology, vol.171, no.5, 1128-1142.

  38. Lonergan, Thomas A.. Regulation of cell shape in Euglena gracilis : II. the effects of altered extra- and intracellular ca2 + Concentrations and the effect of calmodulin antagonists. Journal of cell science, vol.71, no.1, 37-50.

  39. Lonergan, Thomas A.. Regulation of Cell Shape in Euglena gracilis : I. Involvement of the Biological Clock, Respiration, Photosynthesis, and Cytoskeleton. Plant physiology, vol.71, no.4, 719-730.

  40. Danilov, Roman A., Ekelund, Nils G. A.. Responses of Photosynthetic Efficiency, Cell Shape and Motility in Euglena gracilis (Euglenophyceae) to Short-Term Exposure to Heavy Metals and Pentachlorophenol. Water, air, and soil pollution, vol.132, no.1, 61-73.

  41. Schwarzhans, Jan-Philipp, Cholewa, Dominik, Grimm, Philipp, Beshay, Usama, Risse, Joe-Max, Friehs, Karl, Flaschel, Erwin. Dependency of the fatty acid composition of Euglena gracilis on growth phase and culture conditions. Journal of applied phycology, vol.27, no.4, 1389-1399.

  42. Ogbonna, James C.; Tomiyamal, Shota etc. "Heterotrophic cultivation of Euglena gracilis Z for efficient production of &alpha;-tocopherol." Journal of applied phycology, v.10 no.1 (1998), pp. 67-74, doi:10.1023/A:1008011201437.

  43. Booy, F. P., Chanzy, H., Boudet, A.. An electron diffraction study of paramylon storage granules from Euglena gracilis. Journal of microscopy, vol.121, no.2, 133-140.

  44. Kiss, John Z., Vasconcelos, Aurea C., Triemer, Richard E.. STRUCTURE OF THE EUGLENOID STORAGE CARBOHYDRATE, PARAMYLON. American journal of botany, vol.74, no.6, 877-882.

  45. Bohn, John A., BeMiller, James N.. (1→3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydrate polymers, vol.28, no.1, 3-14.

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로