$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Analysis of commercial truck drivers’ potentially dangerous driving behaviors based on 11-month digital tachograph data and multilevel modeling approach

Accident analysis and prevention, v.132, 2019년, pp.105256 -   

Zhou, Tuqiang (The College of Transportation and Logistics, East China Jiaotong University) ,  Zhang, Junyi (Mobilities and Urban Policy Lab, Graduate School for International Development and Cooperation, Hiroshima University)

Abstract AI-Helper 아이콘AI-Helper

Abstract This study analyzed the potentially dangerous driving behaviors of commercial truck drivers from both macro and micro perspectives. The analysis was based on digital tachograph data collected over an 11-month period and comprising 4373 trips made by 70 truck drivers. First, different types...

Keyword

참고문헌 (66)

  1. Transp. Res. Part C Emerg. Technol. Ahmed 91 371 2018 10.1016/j.trc.2018.04.012 The impacts of heavy rain on speed and headway behaviors: an investigation using the SHRP2 naturalistic driving study data 

  2. Accid. Anal. Prev. Anastasopoulos 45 1 110 2012 10.1016/j.aap.2011.11.006 A multivariate tobit analysis of highway accident-injury-severity rates 

  3. Transp. Res. Part F Traffic Psychol. Behav. Atombo 43 104 2016 10.1016/j.trf.2016.09.029 Investigating the motivational factors influencing drivers intentions to unsafe driving behaviours: speeding and overtaking violations 

  4. Accid. Anal. Prev. Bao 106 358 2017 10.1016/j.aap.2017.06.012 Incorporating twitter-based human activity information in spatial analysis of crashes in urban areas 

  5. Accid. Anal. Prev. Bao 122 239 2019 10.1016/j.aap.2018.10.015 A spatiotemporal deep learning approach for citywide short-term crash risk prediction with multi-source data 

  6. Transport. Res. Record J. Transport. Billot 2107 134 2009 10.3141/2107-14 Multilevel assessment of the impact of rain on drivers’ behavior 

  7. Accid. Anal. Prev. Brooks 43 3 698 2011 10.1016/j.aap.2010.10.014 Speed choice and driving performance in simulated foggy conditions 

  8. Transp. Res. Part C Emerg. Technol. Chen 68 285 2016 10.1016/j.trc.2016.04.005 The promises of big data and small data for travel behavior (aka human mobility) analysis 

  9. Transp. Res. Part C Emerg. Technol. Chong 32 207 2013 10.1016/j.trc.2012.09.011 A rule-based neural network approach to model driver naturalistic behavior in traffic 

  10. Int. J. Comput. Commun. Control. Constantinescu 5 654 2010 10.15837/ijccc.2010.5.2221 Driving style analysis using data mining techniques 

  11. Accid. Anal. Prev. Dupont 60 402 2013 10.1016/j.aap.2013.04.035 Multilevel analysis in road safety research 

  12. PROMET-Traffic Eng. Eboli 29 193 2017 Investigating car users’ driving behavior through speed analysis 

  13. Transp. Res. Record. El-Basyouny 2432 65 2014 10.3141/2432-08 Assessing the effect of weather states on crash severity and type by use of full Bayesian multivariate safety models 

  14. Accid. Anal. Prev. Ellison 76 118 2015 10.1016/j.aap.2015.01.009 Driver behaviour profiles for road safety analysis 

  15. Transport. Res. Record J. Transport. Familar 2237 67 2011 10.3141/2237-08 Analysis of speeding behavior: multilevel modeling approach 

  16. Transp. Res. Part F Traffic Psychol. Behav. Faure 40 78 2016 10.1016/j.trf.2016.04.007 The effects of driving environment complexity and dual tasking on drivers’ mental workload and eye blink behavior 

  17. Accid. Anal. Prev. Filtness 99 440 2017 10.1016/j.aap.2015.11.024 Sleep-related crash characteristics: implications for applying a fatigue definition to crash reports 

  18. Annu. Rev. Stat. Appl. Guo 6 309 2019 10.1146/annurev-statistics-030718-105153 Statistical methods for naturalistic driving studies 

  19. Guo 2009 Modeling 100-Car Safety Events: a Case-Based Approach for Analyzing Naturalistic Driving Data 

  20. Renew. Energy Garcia 139 796 2019 10.1016/j.renene.2019.02.103 Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA) 

  21. Accid. Anal. Prev. Hassan 98 348 2017 10.1016/j.aap.2016.10.027 Investigation of drivers’ behavior towards speeds using crash data and self-reported questionnaire 

  22. IET Intel. Transport Syst. He 13 6 1001 2019 10.1049/iet-its.2018.5495 Rollover Risk Assessment and Automated Control for Heavy Duty Vehicles Based on Vehicle-to-infrastructure Information 

  23. Hickman 2010 Distraction in Commercial Trucks and Buses: Assessing Prevalence and Risk in Conjunction with Crashes and Near Crashes. Report No. FMCSA-RRR-10-049 

  24. Accid. Anal. Prev. Hou 120 1 2018 10.1016/j.aap.2018.07.010 Investigating factors of crash frequency with random effects and random parameters models: new insights from Chinese freeway study 

  25. Analysis and Prevention Hu 50 1003 2013 10.1016/j.aap.2012.08.001 Temporal modeling of highway crash counts for senior and non-senior drivers 

  26. Accid. Anal. Prev. Huang 42 1556 2010 10.1016/j.aap.2010.03.013 Multilevel data and Bayesian analysis in traffic safety 

  27. Accid. Anal. Prev. Huang 40 45 2008 10.1016/j.aap.2007.04.002 Severity of driver injury and vehicle damage in traffic crashes at intersections: a Bayesian hierarchical analysis 

  28. Anal. Methods Accid. Res. Huang 14 10 2017 10.1016/j.amar.2017.01.001 A multivariate spatial model of crash frequency by transportation modes for urban intersections 

  29. Accid. Anal. Prev. Islam 67 148 2014 10.1016/j.aap.2014.02.014 Comprehensive analysis of single- and multi-vehicle large truck at-fault crashes on rural and urban roadways in Alabama 

  30. Transp. Res. Part F Kaber 15 600 2012 10.1016/j.trf.2012.06.002 Effects of hazard exposure and roadway complexity on young and older driver situation awareness and performance 

  31. Pure Appl. Geophys. Kazemi-Beydokhti 174 1937 2017 10.1007/s00024-017-1507-0 Spatio-temporal modeling of seismic provinces of iran using DBSCAN algorithm 

  32. Transp. Res. Part F Key 49 145 2017 10.1016/j.trf.2017.05.007 A study investigating the comparative situation awareness of older and younger drivers when driving a route with extended periods of cognitive taxation 

  33. Pattern Recognit. Kumar 58 39 2016 10.1016/j.patcog.2016.03.008 A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method 

  34. IEEE Trans. Veh. Technol. Langari 54 3 925 2005 10.1109/TVT.2005.844685 Intelligent energy management agent for a parallel hybrid vehicle-part I: system architecture and design of the driving situation identification process 

  35. IEEE Trans. Veh. Technol. Langari 54 3 935 2005 10.1109/TVT.2005.844685 Intelligent energy management agent for a parallel hybrid vehicle-part II: torque distribution, charge sustenance strategies, and performance results 

  36. Sustainability Li 10 12 4566 2018 10.3390/su10124566 How does polycentric urban form affect urban commuting? Quantitative measurement using geographical Big Data of 100 Cities in China 

  37. Saf. Sci. Li 58 89 2013 10.1016/j.ssci.2013.04.005 Using geographically weighted Poisson regression for county-level crash modeling in California 

  38. J. Int. Technol. Liu 17 7 1521 2016 A predictive fault diagnose method of wind turbine based on K-Means clustering and neural networks 

  39. Transportation Research Part A Lord 44 291 2010 The statistical analysis of crash-frequency data: a review and assessment of methodological alternatives 

  40. Accid. Anal. Prev. Malin 122 181 2019 10.1016/j.aap.2018.10.014 Accident risk of road and weather conditions on different road types 

  41. Anal. Methods Accid. Res. Mannering 1 1 2014 10.1016/j.amar.2013.09.001 Analytic methods in accident research: methodological frontier and future directions 

  42. Accid. Anal. Prev. McDonald 113 25 2018 10.1016/j.aap.2018.01.005 A contextual and temporal algorithm for driver drowsiness detection 

  43. Accid. Anal. Prev. Mueller 48 472 2012 10.1016/j.aap.2012.03.003 Driving in fog: the effects of driving experience and visibility on speed compensation and hazard avoidance 

  44. CIVVS’ 09. IEEE Workshop on Murphey 23 2009 Driver’s style classification using jerk analysis computational intelligence in vehicles and vehicular systems 

  45. Accid. Anal. Prev. Naznin 92 15 2016 10.1016/j.aap.2016.03.012 Application of a random effects negative binomial model to examine tram-involved crash frequency on route sections in Melbourne, Australia 

  46. OECD 2008 Handbook on Constructing Composite Indicators. Methodology and User Guide 

  47. Appl. Ergon. Pankok 69 136 2018 10.1016/j.apergo.2018.01.008 The effect of navigation display clutter on performance and attention allocation in presentation- and simulator-based driving experiments 

  48. Anal. Methods Accid. Res. Pantangi 21 1 2019 10.1016/j.amar.2018.10.003 A preliminary investigation of the effectiveness of high visibility enforcement programs using naturalistic driving study data: a grouped random parameters approach 

  49. Math. Probl. Eng. Park 2016 1 2016 Random parameter negative binomial model of signalized intersections 

  50. Transp. Res. Part C Peng 74 295 2017 10.1016/j.trc.2016.11.022 Assessing the impact of reduced visibility on traffic crash risk using microscopic data and surrogate safety measures 

  51. Eur. J. Epidemiol. Petridou 16 9 819 2001 10.1023/A:1007649804201 Human factors in the causation of road traffic crashes 

  52. Transp. Res. Part F Radun 18 159 2013 10.1016/j.trf.2013.01.001 Driver fatigue and the law from the perspective of police officers and prosecutors 

  53. Accid. Anal. Prev. Rusli 119 80 2018 10.1016/j.aap.2018.07.006 Applying a random parameters Negative Binomial Lindley model to examine multi-vehicle crashes along rural mountainous highways in Malaysia 

  54. Accid. Anal. Prev. Shi 88 68 2016 10.1016/j.aap.2015.12.007 Multi-level Bayesian safety analysis with unprocessed Automatic Vehicle Identification data for an urban expressway 

  55. Anal. Methods Accid. Res. Vangala 7 29 2015 10.1016/j.amar.2015.06.001 Exploring the application of the negative binomial-generalized exponential model for analyzing traffic crash data with excess zeros 

  56. Transp. Res. Part C Wang 67 84 2016 10.1016/j.trc.2016.02.005 Speed variation during peak and off-peak hours on urban arterials in Shanghai 

  57. Transportation Research Record: Journal of Transportation Wu 2581 154 2016 10.3141/2581-18 Clustering of several typical behavioral characteristics of commercial vehicle drivers based on GPS data mining 

  58. Iet Intell. Transp. Syst. Yan 11 7 431 2017 10.1049/iet-its.2016.0207 Driving risk status prediction using Bayesian networks and Logistic regression 

  59. Accid. Anal. Prev. Ye 106 385 2017 10.1016/j.aap.2017.07.010 Detection of driver engagement in secondary tasks from observed naturalistic driving behavior 

  60. Accid. Anal. Prev. Ye 57 140 2013 10.1016/j.aap.2013.03.025 A simultaneous model of crash frequency by severity level for freeway sections 

  61. Accid. Anal. Prev. Yu 58 97 2013 10.1016/j.aap.2013.04.025 Multi-level Bayesian analysis for single- and multi-vehicle freeway crashes 

  62. Anal. Methods Accid. Res. Zeng 10 12 2016 10.1016/j.amar.2016.03.002 Modeling nonlinear relationship between crash frequency by severity and contributing factors by neural networks 

  63. Ieee Trans. Big Data Zhang 3 3 362 2017 10.1109/TBDATA.2016.2627224 Taxi-Passenger-Demand Modeling based on big data from a roving sensor network 

  64. Safety Science Zhang 111 128 2019 10.1016/j.ssci.2018.07.002 Use of HFACS and fault tree model for collision risk factors analysis of icebreaker assistance in ice-covered waters 

  65. Cities Zhao 82 19 2018 10.1016/j.cities.2018.04.015 Improving the approaches of traffic demand forecasting in the big data era 

  66. Accid. Anal. Prev. Zhu 43 49 2011 10.1016/j.aap.2010.07.007 A comprehensive analysis of factors influencing the injury severity of large-truck crashes 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로