$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] 3D Printing for Energy-Saving: Evidence from Hydraulic Manifolds Design 원문보기

Energies, v.12 no.13, 2019년, pp.2462 -   

Zhang, Jun-hui (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China) ,  Liu, Gan (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China) ,  Ding, Ruqi (Key Laboratory of Conveyance and Equipment, Ministry of Education, East China Jiaotong University, Nanchang 330013, China) ,  Zhang, Kun (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China) ,  Pan, Min (Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK) ,  Liu, Shihao (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

Abstract AI-Helper 아이콘AI-Helper

With the compact circuit layout and small size, hydraulic manifolds sometimes cause high pressure loss. The purpose of this paper is to investigate the pressure loss under different circumstances with various geometry features and present solutions to reduce pressure loss. The pressure loss performa...

참고문헌 (39)

  1. Huber The selection of mechanical actuators based on performance indices Proc. R. Soc. Lond. Series A Math. Phys. Eng. Sci. 1997 10.1098/rspa.1997.0117 453 2185 

  2. 10.1109/ICAR.2015.7251465 Çelikkanat, H., Şahin, E., and Kalkan, S. (2015, January 27-31). Integrating spatial concepts into a probabilistic concept web. Proceedings of the International Conference on Advanced Robotics (ICAR), Istanbul, Turkey. 

  3. Raibert BigDog, the rough-terrain quadruped robot IFAC Proc. 2008 41 10822 

  4. Semini Design of HyQ-A hydraulically and electrically actuated quadruped robot Proc. Inst. Mech. Eng. Part. I J. Syst. Control Eng. 2011 225 831 

  5. Quan Review of energy efficient direct pump controlled cylinder electro-hydraulic technology Renew. Sustain. Energy Rev. 2014 10.1016/j.rser.2014.04.036 35 336 

  6. 10.1115/IMECE2007-42267 Zimmerman, J.D., Pelosi, M., Williamson, C.A., and Ivantysynova, M. (2007). Energy consumption of an LS excavator hydraulic system. ASME 2007 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers. 

  7. 10.2172/1061537 Love, L.J. (2012). Estimating the Impact (Energy, Emissions and Economics) of the US Fluid Power Industry, University of North Texas Libraries, Digital Library. 

  8. 10.1115/FPMC2017-4269 Marani, P., and Martelli, M. (2017). Energy and control characteristics of a novel meter out hydraulic system for mobile applications. ASME/BATH 2017 Symposium on Fluid Power and Motion Control, American Society of Mechanical Engineers. 

  9. Du RETRACTED: Performance analysis of an energy-efficient variable supply pressure electro-hydraulic motion control system Control Eng. Pract. 2016 10.1016/j.conengprac.2015.12.013 48 10 

  10. 10.1115/FPMC2013-4408 Vukovic, M., Sgro, S., and Murrenhoff, H. (2013). STEAM: A mobile hydraulic system with engine integration. ASME/BATH 2013 Symposium on Fluid Power and Motion Control ASME, American Society of Mechanical Engineers. 

  11. Yuan Characteristics of energy efficient switched hydraulic systems JFPS Int. J. Fluid Power Syst. 2014 10.5739/jfpsij.8.90 8 90 

  12. Murrenhoff, H., Sgro, S., and Vukovic, M. (2014, January 26). An overview of energy saving architectures for mobile applications. Proceedings of the 9th International Fluid Power Conference, Aachen, Germany. 

  13. Zhang Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation Appl. Energy 2017 10.1016/j.apenergy.2017.04.085 199 1 

  14. Gong Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system Appl. Energy 2019 10.1016/j.apenergy.2018.10.066 233 724 

  15. 10.3390/en10030310 Zardin, B., Cillo, G., Rinaldini, C., Mattarelli, E., and Borghi, M. (2017). Pressure losses in hydraulic manifolds. Energies, 10. 

  16. Idelchik, I.E. (1960). Handbook of Hydraulic Resistance, Hemisphere Publishing Corp.. [1st ed.]. 

  17. Murakami Studies on fluid flow in three-dimensional bend conduits JSME 1969 10.1299/jsme1958.12.1369 12 1369 

  18. 10.1002/9781118275276 Rennels, D.C., and Hudson, H.M. (2012). Pipe Flow, A Practical and Comprehensive Guide, John Wiley & Sons, Inc. 

  19. Oberlack Similarity in non-rotating and rotating turbulent pipe flows J. Fluid Mech. 1999 10.1017/S0022112098001542 379 1 

  20. Wang Direct numerical simulation of a turbulent 90° bend pipe flow Int. J. Heat Fluid Flow 2018 10.1016/j.ijheatfluidflow.2018.08.003 73 199 

  21. Zhang CFD-based optimal design of duct nets in hydraulic manifold block J. Wuhan Univ. Technol. 2006 28 621 

  22. Song, Z.A., and Yong’An, W. (2009, January 21-22). Research and analysis of the resistance characteristic of combined flow channel. Proceedings of the 2009 International Workshop on Information Security and Application (IWISA 2009), Qingdao, China. 

  23. Abe, O., Tsukiji, T., Hara, T., and Yasunaga, K. (2011). Pressure Drop of Pipe Flow in Manifold Block. 8th JFPS International Symposium on Fluid Power, Okinawa, Japan, 25-28 October, 2011, The Japan Fluid Power System Society. 

  24. 10.3390/en10060788 Zardin, B., Cillo, G., Borghi, M., D’Adamo, A., and Fontanesi, S. (2017). Pressure losses in multiple-elbow paths and in v-bends of hydraulic manifolds. Energies, 10. 

  25. Kruth Progress in additive manufacturing and rapid prototyping CIRP Ann. Manuf. Technol. 1998 10.1016/S0007-8506(07)63240-5 47 525 

  26. 10.1007/978-1-4939-2113-3 Gibson, I., Rosen, D.W., and Stucker, B. (2014). Additive Manufacturing Technologies-Rapid Prototyping to Direct Digital Manufacturing, Springer. 

  27. Frazier Metal additive manufacturing: A review J. Mater. Eng. Perform. 2014 10.1007/s11665-014-0958-z 23 1917 

  28. Tofail Additive manufacturing: Scientific and technological challenges, market uptake and opportunities Mater. Today 2018 10.1016/j.mattod.2017.07.001 21 22 

  29. Chhabra Rapid casting solutions: A review Rapid Prototyp. J. 2011 10.1108/13552541111156469 17 328 

  30. Sachs Three-dimensional printing: Rapid tooling and prototypes directly from a CAD model CIRP Ann. Manuf. Technol. 1990 10.1016/S0007-8506(07)61035-X 39 201 

  31. Saunders, M. (2019, March 27). How AM Could Disrupt Your Market. Available online: https://www.renishaw.com/en/additive-impact-part-2-how-am-could-disrupt-your-market--37551. 

  32. Cooper Additive manufacturing for product improvement at Red Bull technology Mater. Des. 2012 10.1016/j.matdes.2012.05.017 41 226 

  33. 10.1115/1.4031156 Schmelzle, J., Kline, E.V., Dickman, C.J., Reutzel, E.W., Jones, G., and Simpson, T.W. (2015). (Re)designing for part consolidation: Understanding the challenges of metal additive manufacturing. J. Mech. Des., 137. 

  34. Qian A numerical investigation of the flow of nanofluids through a micro Tesla valve J. Zhejiang Univ. Sci. A 2019 10.1631/jzus.A1800431 20 50 

  35. Rohsenow, W.M., Hartnett, J.P., and Cho, Y.I. (1998). Handbook of Heat Transfer, McGraw-Hill. 

  36. Gandhi CFD simulation for steam distribution in header and tube assemblies Chem. Eng. Res. Des. 2012 10.1016/j.cherd.2011.08.019 90 487 

  37. Agrawal Laser anemometer study of flow development in curved circular pipes J. Fluid Mech. 1978 10.1017/S0022112078000762 85 497 

  38. Sudo Experimental investigation on turbulent flow in a circular-sectioned 90-degree bend Exp. Fluids 1998 10.1007/s003480050206 25 42 

  39. Kalpakli Vortical patterns in turbulent flow downstream a 90° curved pipe at high Womersley numbers Int. J. Heat Fluid Flow 2013 10.1016/j.ijheatfluidflow.2013.09.008 44 692 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로