$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Mechanistic insights into Cu and K promoted Fe-catalyzed production of liquid hydrocarbons via CO2 hydrogenation

Journal of CO<SUB>2</SUB> utilization, v.34, 2019년, pp.522 - 532  

Hwang, Sun-Mi (Corresponding authors.) ,  Han, Seung Ju (Corresponding authors.) ,  Min, Ji Eun ,  Park, Hae-Gu ,  Jun, Ki-Won ,  Kim, Seok Ki

Abstract AI-Helper 아이콘AI-Helper

Abstract Understanding the origin of the high activity of Fe-Cu-K catalysts during CO2 hydrogenation for liquid hydrocarbon production is imperative. However, designing suitable catalysts for efficient power-to-liquid processes remains challenging. In this work, we determined how Cu and K modified ...

Keyword

참고문헌 (67)

  1. J. CO2 Util. Saeidi 5 66 2014 10.1016/j.jcou.2013.12.005 Hydrogenation of CO2 to value-added products- A review and potential future developments 

  2. ChemSusChem Yu 1 893 2008 10.1002/cssc.200800169 Recent advances in CO2 capture and utilization 

  3. Chem. Soc. Rev. Wang 40 3703 2011 10.1039/c1cs15008a Recent advances in catalytic hydrogenation of carbon dioxide 

  4. Catal. Today Song 115 2 2006 10.1016/j.cattod.2006.02.029 Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing 

  5. Catal. Today Zevenhoven 115 73 2006 10.1016/j.cattod.2006.02.020 Chemical fixation of CO2 in carbonates: routes to valuable products and long-term storage 

  6. Catal. Sci. Technol. Spinner 2 19 2012 10.1039/C1CY00314C Recent progress in the electrochemical conversion and utilization of CO2 

  7. Catal. Today Ma 148 221 2009 10.1016/j.cattod.2009.08.015 A short review of catalysis for CO2 conversion 

  8. Energy Pietzcker 64 95 2014 10.1016/j.energy.2013.08.059 Long-term transport energy demand and climate policy: alternative visions on transport decarbonization in energy-economy models 

  9. Environ. Sci. Pollut. Res. Mennicken 23 11386 2016 10.1007/s11356-016-6641-1 The German R&D program for CO2 utilization-innovations for a green economy 

  10. Nat. Catal. Tackett 2 381 2019 10.1038/s41929-019-0266-y Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes 

  11. Energy Environ. Sci. Dorner 3 884 2010 10.1039/c001514h Heterogeneous catalytic CO2 conversion to value-added hydrocarbons 

  12. J. Mater. Chem. A Guo 6 23244 2018 10.1039/C8TA05377D Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons 

  13. Appl. Catal. B Albrecht 204 119 2017 10.1016/j.apcatb.2016.11.017 Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over non-doped Fe2O3 

  14. Top. Catal. Satthawong 57 588 2013 10.1007/s11244-013-0215-y Comparative study on CO2 hydrogenation to higher hydrocarbons over Fe-based bimetallic catalysts 

  15. ChemCatChem Rodemerck 5 1948 2013 10.1002/cctc.201200879 Catalyst development for CO2 hydrogenation to fuels 

  16. Catal. Commun. Dorner 15 88 2011 10.1016/j.catcom.2011.08.017 C2-C5+ olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts 

  17. Energy Convers. Manage. Nam 38 397 1997 10.1016/S0196-8904(96)00301-9 Catalytic conversion of carbon dioxide into hydrocarbons over zinc promoted iron catalysts 

  18. ACS Sustainable Chem. Eng. Liu 6 10182 2018 10.1021/acssuschemeng.8b01491 Selective CO2 hydrogenation to hydrocarbons on Cu-promoted Fe-based catalysts: dependence on Cu-Fe interaction 

  19. Ind. Eng. Chem. Res. Riedel 40 1355 2001 10.1021/ie000084k Kinetics of CO2 hydrogenation on a K-promoted Fe catalyst 

  20. Catal. Lett. Fischer 146 509 2016 10.1007/s10562-015-1670-9 Hydrocarbons via CO2 hydrogenation over iron catalysts: the effect of potassium on structure and performance 

  21. Appl. Catal. A Gen. Ngantsoue-Hoc 236 77 2002 10.1016/S0926-860X(02)00278-8 Fischer?Tropsch synthesis: activity and selectivity for group I alkali promoted iron-based catalysts 

  22. J. Catal. Amoyal 348 29 2017 10.1016/j.jcat.2017.01.020 Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation 

  23. J. CO2 Util. Satthawong 3-4 102 2013 10.1016/j.jcou.2013.10.002 Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons 

  24. ACS Catal. Wei 8 9958 2018 10.1021/acscatal.8b02267 Catalytic hydrogenation of CO2 to isoparaffins over Fe-based multifunctional catalysts 

  25. Appl. Catal. A Gen. Yan 194-195 63 2000 10.1016/S0926-860X(99)00354-3 Promotion effect of Fe-Cu catalyst for the hydrogenation of CO2 and application to slurry reactor 

  26. Appl. Catal. B Hu 132-133 54 2013 10.1016/j.apcatb.2012.11.003 Selective hydrogenation of CO2 and CO to useful light olefins over octahedral molecular sieve manganese oxide supported iron catalysts 

  27. Appl. Catal. B Logdberg 89 167 2009 10.1016/j.apcatb.2008.11.037 Hydrocarbon production via Fischer-Tropsch synthesis from H2-poor syngas over different Fe-Co/γ-Al2O3 bimetallic catalysts 

  28. Appl. Catal. B Visconti 200 530 2017 10.1016/j.apcatb.2016.07.047 CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst 

  29. J. Catal. Dry 15 190 1969 10.1016/0021-9517(69)90023-2 Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer-Tropsch synthesis 

  30. Appl. Catal. A Gen. Hong 218 53 2001 10.1016/S0926-860X(01)00617-2 Deactivation study on a coprecipitated Fe-Cu-K-Al catalyst in CO2 hydrogenation 

  31. Molecules Bradley 22 1579 2017 10.3390/molecules22091579 The effect of copper addition on the activity and stability of iron-based CO2 hydrogenation catalysts 

  32. Top. Catal. Sharma 57 526 2014 10.1007/s11244-013-0209-9 Effect of structural promoters on Fe-based Fischer-Tropsch synthesis of biomass derived syngas 

  33. Appl. Catal. A Gen. Jun 259 221 2004 10.1016/j.apcata.2003.09.034 Catalytic investigation for Fischer-Tropsch synthesis from bio-mass derived syngas 

  34. Catal. Today Kim 115 228 2006 10.1016/j.cattod.2006.02.038 Performance of catalytic reactors for the hydrogenation of CO2 to hydrocarbons 

  35. Energy Fuels Kang 27 6377 2013 10.1021/ef401177k Effects of the CO/CO2 ratio in synthesis gas on the catalytic behavior in Fischer-Tropsch synthesis using K/Fe-Cu-Al catalysts 

  36. J. Phys. Chem. C He 122 2806 2018 10.1021/acs.jpcc.7b11430 Hunting the correlation between Fe5C2 surfaces and their activities on CO: the descriptor of bond valence 

  37. Nat. Chem. Gao 9 1019 2017 10.1038/nchem.2794 Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst 

  38. Nat. Commun. Wei 8 15174 2017 10.1038/ncomms15174 Directly converting CO2 into a gasoline fuel 

  39. Appl. Catal. A Gen. Lee 253 293 2003 10.1016/S0926-860X(03)00540-4 The effect of binders on structure and chemical properties of Fe-K/γ-Al2O3 catalysts for CO2 hydrogenation 

  40. J. Phys. Chem. C Nie 121 13164 2017 10.1021/acs.jpcc.7b02228 Mechanistic insight into C-C coupling over Fe-Cu bimetallic catalysts in CO2 hydrogenation 

  41. Appl. Catal. B Choi 202 605 2017 10.1016/j.apcatb.2016.09.072 Carbon dioxide Fischer-Tropsch synthesis: a new path to carbon-neutral fuels 

  42. J. Phys. Chem. C Nie 120 9364 2016 10.1021/acs.jpcc.6b03461 Computational investigation of Fe-Cu bimetallic catalysts for CO2 hydrogenation 

  43. J. Catal. Li 206 202 2002 10.1006/jcat.2001.3506 Promoted iron-based catalysts for the Fischer-tropsch synthesis: design, synthesis, site densities, and catalytic properties 

  44. J. Synchrotron Radiat. Ravel 12 537 2005 10.1107/S0909049505012719 ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT 

  45. Phys. Rev. B Kresse 49 14251 1994 10.1103/PhysRevB.49.14251 Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium 

  46. Comput. Mater. Sci. Kresse 6 15 1996 10.1016/0927-0256(96)00008-0 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set 

  47. Phys. Rev. Lett. Dion 92 22 2004 10.1103/PhysRevLett.92.246401 Van der Waals density functional for general geometries 

  48. Phys. Rev. B Condens. Matter Mater. Phys. Klime 83 1 2011 Van der Waals density functionals applied to solids 

  49. Phys. Rev. Lett. Roman-Perez 103 1 2009 10.1103/PhysRevLett.103.096102 Efficient implementation of a van der waals density functional: application to double-wall carbon nanotubes 

  50. Phys. Rev. B Condens. Matter Mater. Phys. Lee 82 3 2010 Higher-accuracy van der Waals density functional 

  51. Cramer 2004 Essentials of Computational Chemistry: Theories and Models 

  52. Appl. Surf. Sci. Guo 406 301 2017 10.1016/j.apsusc.2017.02.134 Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms 

  53. Science Eren 351 475 2016 10.1126/science.aad8868 Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption 

  54. J. Mol. Catal. A Chem. Yang 302 129 2009 10.1016/j.molcata.2008.12.009 Structure and energetics of hydrogen adsorption on Fe3O4(1 1 1) 

  55. Surf. Sci. Yu 606 872 2012 10.1016/j.susc.2012.02.003 Fe3O4 surface electronic structures and stability from GGA + U 

  56. J. Phys. Chem. C Sorescu 113 9256 2009 10.1021/jp811381d Plane-wave density functional theory investigations of the adsorption and activation of CO on Fe5C2 surfaces 

  57. Energy Environ. Sci. Peterson 3 1311 2010 10.1039/c0ee00071j How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels 

  58. ChemCatChem Studt 7 1105 2015 10.1002/cctc.201500123 The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts 

  59. Catal. Sci. Technol. Christensen 5 4946 2015 10.1039/C5CY01332A Identifying systematic DFT errors in catalytic reactions 

  60. J. Chem. Phys. Henkelman 113 9978 2000 10.1063/1.1323224 Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points 

  61. J. Chem. Phys. Sheppard 136 2012 10.1063/1.3684549 A generalized solid-state nudged elastic band method 

  62. Catal. Sci. Technol. Jiang 7 1245 2017 10.1039/C7CY00048K Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer-tropsch synthesis: understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation 

  63. Phys. Chem. Chem. Phys. Smit 12 667 2010 10.1039/B920256K The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts 

  64. J. Phys. Chem. B Li 105 5743 2001 10.1021/jp010288u Structure and site evolution of iron oxide catalyst precursors during the Fischer?Tropsch synthesis 

  65. Appl. Phys. Lett. Schilling 68 767 1996 10.1063/1.116736 Extended x­ray absorption fine structure of metastable bcc and fcc phases in mechanically alloyed Fe-Cu 

  66. Catal. Sci. Technol. Montemore 4 3748 2014 10.1039/C4CY00335G Scaling relations between adsorption energies for computational screening and design of catalysts 

  67. Top. Catal. Cheng 53 326 2010 10.1007/s11244-010-9450-7 Some understanding of Fischer-Tropsch synthesis from density functional theory calculations 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로