$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Recycling waste-derived marble powder for CO2 capture

Process safety and environmental protection : transactions of the Institution of Chemical Engineers, Part B, v.132, 2019년, pp.214 - 225  

Nawar, Azra (US-Pak Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST)) ,  Ghaedi, Hosein (School of Environment, Tsinghua University) ,  Ali, Majid (US-Pak Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST)) ,  Zhao, Ming (School of Environment, Tsinghua University) ,  Iqbal, Naseem (US-Pak Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST)) ,  Khan, Rashid (School of Environment, Tsinghua University)

Abstract AI-Helper 아이콘AI-Helper

Abstract One of the most promising technologies to reduce global emissions of CO2 as a major greenhouse gas is called calcium looping (CaL). Current calcium-oxide-based sorbents used in CaL process either expensive or lose their effectiveness over many cycles. On the other hand, the negative impact...

주제어

참고문헌 (100)

  1. Ultrason. Sonochem. Aimin 12 467 2005 10.1016/j.ultsonch.2004.07.003 Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose 

  2. Constr. Build. Mater. Aliabdo 50 28 2014 10.1016/j.conbuildmat.2013.09.005 Re-use of waste marble dust in the production of cement and concrete 

  3. Alibaba, 2019. Accessed http://www.alibaba.com (september 2019). 

  4. Chem. Eng. J. Alriols 148 106 2009 10.1016/j.cej.2008.08.008 Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process 

  5. Energy Fuels Alvarez 19 270 2005 10.1021/ef049864m Pore-size and shape effects on the recarbonation performance of calcium oxide submitted to repeated Calcination/Recarbonation cycles 

  6. Bioresour. Technol. Alvira 101 4851 2010 10.1016/j.biortech.2009.11.093 Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review 

  7. Jordan J. Earth Environ. Sci. Aukour 1 11 2008 Marble production and environmental constrains: case study from Zarqa Governorate, Jordan 

  8. Constr. Build. Mater. Bilgin 29 449 2012 10.1016/j.conbuildmat.2011.10.011 Use of waste marble powder in brick industry 

  9. Prog. Energy Combust. Sci. Blamey 36 260 2010 10.1016/j.pecs.2009.10.001 The calcium looping cycle for large-scale CO2 capture 

  10. Energy Fuels Chen 23 1437 2009 10.1021/ef800779k Long-term Calcination/Carbonation cycling and thermal pretreatment for CO2 capture by Limestone and dolomite 

  11. J. CO2 Util. Cuellar-Franca 9 82 2015 10.1016/j.jcou.2014.12.001 Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts 

  12. Chem. Eng. Res. Des. Dean 89 836 2011 10.1016/j.cherd.2010.10.013 The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production 

  13. J. Co2 Util. Della Pietra 25 14 2018 10.1016/j.jcou.2018.03.002 Integration of a calcium looping process (CaL) to molten carbonate fuel cells (MCFCs), as carbon concentration system: first findings 

  14. Demirel 181 2018 Waste and Supplementary Cementitious Materials in Concrete 6 - waste marble powder/dust 

  15. Appl. Energy Erans 180 722 2016 10.1016/j.apenergy.2016.07.074 Calcium looping sorbents for CO2 capture 

  16. Energy Fuels Florin 24 4598 2010 10.1021/ef100447c Synthetic CaO-Based sorbent for CO2 capture from large-point sources 

  17. Chem. Eng. Sci. Florin 64 187 2009 10.1016/j.ces.2008.10.021 Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles 

  18. Catal. Today Gao 190 107 2012 10.1016/j.cattod.2011.12.004 Synthesis of dimethyl carbonate over waste eggshell catalyst 

  19. Int. J. Greenhouse Gas Control Ghaedi 66 147 2017 10.1016/j.ijggc.2017.09.020 Investigation of various process parameters on the solubility of carbon dioxide in phosphonium-based deep eutectic solvents and their aqueous mixtures: experimental and modeling 

  20. J. Ind. Eng. Chem. Hamed 20 2370 2014 10.1016/j.jiec.2013.10.015 Adsorptive removal of methylene blue as organic pollutant by marble dust as eco-friendly sorbent 

  21. Fuel Process. Technol. He 156 339 2017 10.1016/j.fuproc.2016.09.017 Study on the interaction between CaO-based sorbents and coal ash in calcium looping process 

  22. Fuel Hu 167 17 2016 10.1016/j.fuel.2015.11.048 Structurally improved CaO-based sorbent by organic acids for high temperature CO2 capture 

  23. Ind. Eng. Chem. Res. Hughes 43 5529 2004 10.1021/ie034260b Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor 

  24. Appl. Energy Jing 220 419 2018 10.1016/j.apenergy.2018.03.069 Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere 

  25. Appl. Therm. Eng. Kanniche 30 53 2010 10.1016/j.applthermaleng.2009.05.005 Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture 

  26. J. CO2 Util. Kenarsari 9 1 2015 10.1016/j.jcou.2014.11.001 CO2 capture using calcium oxide under biomass gasification conditions 

  27. J. Mol. Liq. Khan 249 1236 2018 10.1016/j.molliq.2017.11.145 High-pressure absorption study of CO2 in aqueous N -methyldiethanolamine (MDEA) and MDEA-piperazine (PZ)-1-butyl-3-methylimidazolium trifluoromethanesulfonate [bmim][OTf] hybrid solvents 

  28. Energy Procedia Kim 114 220 2017 10.1016/j.egypro.2017.03.1164 Sol-gel synthesis of MgAl2O4-stabilized CaO for CO2 capture 

  29. J. Cleaner Prod. Li 277 810 2019 10.1016/j.jclepro.2019.04.174 Investigation of dust exposure and control practices in the construction industry in Hong Kong: implications for cleaner production 

  30. Ind. Eng. Chem. Res. Li 51 16042 2012 10.1021/ie301375g Sequential SO2/CO2 capture of calcium-based solid waste from the paper industry in the calcium looping process 

  31. Fuel Li 88 697 2009 10.1016/j.fuel.2008.09.018 Modified CaO-based sorbent looping cycle for CO2 mitigation 

  32. Chem. Eng. Technol. Li 32 1176 2009 10.1002/ceat.200900008 CO2Capture Behavior of Shell during Calcination/Carbonation Cycles 

  33. Chem. Eng. Technol. Li 32 1176 2009 10.1002/ceat.200900008 CO2Capture Behavior of Shell during Calcination/Carbonation Cycles 

  34. Fuel Liu 167 17 2016 10.1016/j.fuel.2015.11.048 Structurally improved CaO-based sorbent by organic acids for high temperature CO2 capture 

  35. Environ. Sci. Technol. Liu 44 841 2010 10.1021/es902426n Calcium precursors for the production of CaO sorbents for multicycle CO2 capture 

  36. J. Environ. Eng. Lu Dennis 135 404 2009 10.1061/(ASCE)EE.1943-7870.0000079 Sintering and Reactivity of CaCO3 -Based Sorbents for In Situ CO2Capture in Fluidized Beds under Realistic Calcination Conditions 

  37. Desalination Luis 380 93 2016 10.1016/j.desal.2015.08.004 Use of monoethanolamine (MEA) for CO2 capture in a global scenario: consequences and alternatives 

  38. Ind. Eng. Chem. Res. Luo 49 11778 2010 10.1021/ie1012745 Development and performance of CaO/La2O3 sorbents during calcium looping cycles for CO2 capture 

  39. Fuel Manovic 87 1564 2008 10.1016/j.fuel.2007.08.022 Sequential SO2/CO2 capture enhanced by steam reactivation of a CaO-based sorbent 

  40. Ind. Eng. Chem. Res. Manovic 49 9105 2010 10.1021/ie101352s Carbonation of CaO-Based sorbents enhanced by steam addition 

  41. Int. J. Environ. Res. Public Health Manovic 7 3129 2010 10.3390/ijerph7083129 Lime-based sorbents for high-temperature CO2 capture--a review of sorbent modification methods 

  42. Chem. Eng. Sci. Manovic 64 3236 2009 10.1016/j.ces.2009.03.051 CO2 looping cycles with CaO-based sorbent pretreated in CO2 at high temperature 

  43. Fuel Manovic 88 1893 2009 10.1016/j.fuel.2009.04.012 Influence of calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles 

  44. Env. Sci. Tech. Manovic 46 12720 2012 10.1021/es303252j Spray water Reactivation/Pelletization of spent CaO-based sorbent from calcium looping cycles 

  45. Energy Procedia Mantripragada 63 2199 2014 10.1016/j.egypro.2014.11.239 Calcium looping cycle for CO2 capture: performance, cost and feasibility analysis 

  46. AlChE J. Maya 64 3638 2018 10.1002/aic.16326 Effect of the CaO sintering on the calcination rate of CaCO3 under atmospheres containing CO2 

  47. Chem. Eng. J. Mohammadi 243 455 2014 10.1016/j.cej.2014.01.018 Refractory dopant-incorporated CaO from waste eggshell as sustainable sorbent for CO2 capture: experimental and kinetic studies 

  48. Chem. Eng. J. Mohammadi 243 455 2014 10.1016/j.cej.2014.01.018 Refractory dopant-incorporated CaO from waste eggshell as sustainable sorbent for CO2 capture: experimental and kinetic studies 

  49. Energy Mondal 46 431 2012 10.1016/j.energy.2012.08.006 Progress and trends in CO2 capture/separation technologies: a review 

  50. J. Cleaner Prod. Motevali 154 445 2017 10.1016/j.jclepro.2017.03.219 A comparison between pollutants and greenhouse gas emissions from operation of different dryers based on energy consumption of power plants 

  51. Environ. Monit. Assess. Mulk 187 8 2015 10.1007/s10661-014-4221-8 Impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan 

  52. J. Mol. Liq. Murshid 250 162 2018 10.1016/j.molliq.2017.11.176 Experimental and correlation of viscosity and refractive index of non-aqueous system of diethanolamine (DEA) and dimethylformamide (DMF) for CO2 capture 

  53. J. Env. Chem. Eng. Murshid 6 6390 2018 10.1016/j.jece.2018.06.024 Volumetric properties of non-aqueous binary mixture of diethanolamine (DEA) and dimethylformamide (DMF) 

  54. Pachauri 104 2007 Climate Change 2007: Synthesis Report 

  55. Resour. Conserv. Recycl. Palasantzas 11 225 1994 10.1016/0921-3449(94)90092-2 Preliminary economic analysis for production of calcium magnesium acetate from organic residues 

  56. Miner. Eng. Petavratzi 18 1183 2005 10.1016/j.mineng.2005.06.017 Particulates from mining operations: a review of sources, effects and regulations 

  57. Ind. Eng. Chem.Res. Pinheiro 55 7860 2016 10.1021/acs.iecr.5b04574 Waste marble powders as promising inexpensive natural CaO-Based sorbents for post-combustion CO2 capture 

  58. Energy Fuels Qin 26 154 2012 10.1021/ef201141z Performance of extruded particles from calcium hydroxide and cement for CO2 capture 

  59. Renew. Sustain. Energy Rev. Rahman 71 112 2017 10.1016/j.rser.2017.01.011 Pollution to solution: capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future 

  60. Spectrochim. Acta A. Mol. Biomol. Spectrosc. Reddy 81 53 2011 10.1016/j.saa.2011.05.043 Combustion synthesis, characterization and Raman studies of ZnO nanopowders 

  61. Fuel Process. Technol. Ridha 116 284 2013 10.1016/j.fuproc.2013.07.007 Assessment of limestone treatment with organic acids for CO2 capture in Ca-looping cycles 

  62. Int. J. Greenhouse Gas Control Ridha 17 357 2013 10.1016/j.ijggc.2013.05.009 Pelletized CaO-based sorbents treated with organic acids for enhanced CO2 capture in Ca-looping cycles 

  63. Int. J. Greenhouse Gas Control Ridha 16 21 2013 10.1016/j.ijggc.2013.02.026 Post-combustion CO2 capture by formic acid-modified CaO-based sorbents 

  64. Energy Fuels Rong 27 5332 2013 10.1021/ef4007214 Steam hydration reactivation of CaO-Based sorbent in cyclic Carbonation/Calcination for CO2 capture 

  65. Chem. Eng. J. Salvador 96 187 2003 10.1016/j.cej.2003.08.011 Enhancement of CaO for CO2 capture in an FBC environment 

  66. Fuel Santos 94 624 2012 10.1016/j.fuel.2011.10.011 Investigation of a stable synthetic sol-gel CaO sorbent for CO2 capture 

  67. J. Eur. Ceram. Soc. Sarkar 26 297 2006 10.1016/j.jeurceramsoc.2004.11.006 Phase and microstructure evolution during hydrothermal solidification of clay-quartz mixture with marble dust source of reactive lime 

  68. Scripps Institution of Oceanography 2019 Concentration of CO2 

  69. Int. J. Res. Eng. Technol. Sharma 4 2807 2017 Effect of marble slurry on environment and highway users 

  70. Chem. Eng. Res. Des. Shimizu 77 62 1999 10.1205/026387699525882 A twin fluid-bed reactor for removal of CO2 from combustion processes 

  71. Energy Environ. Sci. Siegelman 12 2161 2019 10.1039/C9EE00505F Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions 

  72. Energy Fuels Song 31 12521 2017 10.1021/acs.energyfuels.7b02330 Effects of drying methods on wet chemistry synthesis of Al-Stabilized CaO sorbents for cyclic CO2 capture 

  73. Fuel Sun 239 1046 2019 10.1016/j.fuel.2018.11.123 Evaluation of high-temperature CO2 capture performance of cellulose-templated CaO-based pellets 

  74. Chem. Eng. J. Sun 285 293 2016 10.1016/j.cej.2015.10.026 Enhanced performance of extruded-spheronized carbide slag pellets for high temperature CO2 capture 

  75. Appl. Energy Sun 242 919 2019 10.1016/j.apenergy.2019.03.165 Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature 

  76. AlChE J. Sun 53 2432 2007 10.1002/aic.11251 The effect of CaO sintering on cyclic CO2 capture in energy systems 

  77. Powder Technol. Sun 233 8 2013 10.1016/j.powtec.2012.08.011 Enhancement of CO2 capture capacity by modifying limestone with propionic acid 

  78. Powder Technol. Sun 233 8 2013 10.1016/j.powtec.2012.08.011 Enhancement of CO2 capture capacity by modifying limestone with propionic acid 

  79. Mater Sci-Poland Tangboriboon 30 313 2012 10.2478/s13536-012-0055-7 Preparation and properties of calcium oxide from eggshells via calcination 

  80. Constr. Build. Mater. Topcu 23 1947 2009 10.1016/j.conbuildmat.2008.09.007 Effect of waste marble dust content as filler on properties of self-compacting concrete 

  81. Sustainability Toubal Seghir 11 2215 2019 10.3390/su11082215 The utilization of waste marble dust as a cement replacement in air-cured mortar 

  82. PCCP Valverde 15 11775 2013 10.1039/c3cp50480h CO2 multicyclic capture of pretreated/doped CaO in the Ca-looping process. Theory and experiments 

  83. Ceram. Int. Vanga 45 7594 2019 10.1016/j.ceramint.2019.01.054 Novel synthesis of combined CaO-Ca12Al14O33-Ni sorbent-catalyst material for sorption enhanced steam reforming processes 

  84. Constr. Build. Mater. Vardhan 203 45 2019 10.1016/j.conbuildmat.2019.01.079 Strength, permeation and micro-structural characteristics of concrete incorporating waste marble 

  85. Energies Voldsund 12 559 2019 10.3390/en12030559 Comparison of technologies for CO2 capture from cement production-part 1: technical evaluation 

  86. Ecol. Econ. Wang 142 163 2017 10.1016/j.ecolecon.2017.06.023 A multi-region structural decomposition analysis of global CO2 emission intensity 

  87. Chem. Eng. J. Wang 173 158 2011 CO2 capture of limestone modified by hydration-dehydration technology for carbonation/calcination looping 

  88. Energy Procedia Wei 158 5073 2019 10.1016/j.egypro.2019.01.641 Size effect of calcium precursor and binder on CO2 capture of composite CaO-based pellets 

  89. J. Am. Ceram. Soc. Wei 102 1414 2019 10.1111/jace.15952 Improvement in hydration resistance of CaO granules by addition of Zr(OH)4 and Al(OH)3 

  90. Ceram. Int. Witoon 37 3291 2011 10.1016/j.ceramint.2011.05.125 Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent 

  91. Appl. Energy Witoon 118 32 2014 10.1016/j.apenergy.2013.12.023 Biotemplated synthesis of highly stable calcium-based sorbents for CO2 capture via a precipitation method 

  92. J. Mater. Chem. A Mater. Energy Sustain. Yan 3 7966 2015 10.1039/C4TA06639A A green and scalable synthesis of highly stable Ca-based sorbents for CO2 capture 

  93. Fuel Yang 242 1 2019 10.1016/j.fuel.2019.01.018 Thermodynamics and kinetics analysis of Ca-looping for CO2 capture: application of carbide slag 

  94. J. Mater. Chem. A Mater. Energy Sustain. Yang 3 6440 2015 10.1039/C4TA06273F CO2 capture by dry alkanolamines and an efficient microwave regeneration process 

  95. Resour. Conserv. Recycl. Yang 7 181 1992 10.1016/0921-3449(92)90016-U Calcium magnesium acetate (CMA) production from whey permeate: process and economic analysis 

  96. Ind. Eng. Chem. Res. Yin 52 18215 2013 10.1021/ie403080c Influence of hydration by Steam/Superheating on the CO2 capture performance and physical properties of CaO-Based particles 

  97. Chem. Eng. J. Yin 198-199 38 2012 10.1016/j.cej.2012.05.078 Reactivation of calcium-based sorbent by water hydration for CO2 capture 

  98. Ind. Eng. Chem. Res. Yu 51 2133 2012 10.1021/ie200802y Activation strategies for calcium-based sorbents for CO2 capture: a perspective 

  99. Phys. Chem. Chem. Phys. Zhang 14 16633 2012 10.1039/c2cp42209c Sintering of calcium oxide (CaO) during CO2 chemisorption: a reactive molecular dynamics study 

  100. Sustain. Energy Fuels Zhao 2 2733 2018 10.1039/C8SE00413G Zirconia incorporated calcium looping absorbents with superior sintering resistance for carbon dioxide capture from in situ or ex situ processes 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로