$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks

Environmental modelling & software : with environment data news, v.124, 2020년, pp.104600 -   

Zhang, Bo (Corresponding author.) ,  Zhang, Hanwen (Corresponding author.) ,  Zhao, Gengming ,  Lian, Jie

Abstract AI-Helper 아이콘AI-Helper

Abstract Air pollution problems have a severe effect on the natural environment and public health. The application of machine learning to air pollutant data can result in a better understanding of environmental quality. Of these methods, the deep learning method has proven to be a very efficient an...

주제어

참고문헌 (53)

  1. J. Hazard Mater. Akyuz 170 1 13 2009 10.1016/j.jhazmat.2009.05.029 Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey 

  2. Almousli 2013 International Conference on Neural Information Processing Semi supervised autoencoders: better focusing model capacity during feature extraction 

  3. Environ. Model. Softw Brooks 76 81 2016 10.1016/j.envsoft.2015.10.012 Predicting recreational water quality advisories: a comparison of statistical methods 

  4. J. Air Waste Manag. Assoc. Cardelino 51 8 1227 2001 10.1080/10473289.2001.10464342 Ozone predictions in Atlanta, Georgia: analysis of the 1999 ozone season 

  5. Environ. Model. Softw Carslaw 27 52 2012 10.1016/j.envsoft.2011.09.008 Openair-an R package for air quality data analysis 

  6. Atmos. Environ. Chen 92 182 2014 10.1016/j.atmosenv.2014.04.030 Seasonal modeling of PM2.5 in California\"s san Joaquin valley 

  7. Expert Syst. Appl. Chen 72 221 2017 10.1016/j.eswa.2016.10.065 Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN 

  8. Collobert 2008 Proceedings of the 25th International Conference on Machine Learning A unified architecture for natural language processing: deep neural networks with multitask learning 

  9. Atmos. Environ. Degaetano 38 11 1547 2004 10.1016/j.atmosenv.2003.12.020 Temporal, spatial and meteorological variations in hourly PM2.5 concentration extremes in New York City 

  10. J. Electr. Comput. Eng. Deters 2017 2017 Modeling PM2. 5 urban pollution using machine learning and selected meteorological parameters 

  11. Neurocomputing Guo 187.C 27 2016 10.1016/j.neucom.2015.09.116 Deep learning for visual understanding: a review 

  12. Biometrika Hannan 71 2 273 1984 10.1093/biomet/71.2.273 A method for autoregressive-moving average estimation 

  13. He 2016 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Deep residual learning for image recognition 

  14. Science Hinton 313 5786 504 2006 10.1126/science.1127647 Reducing the dimensionality of data with neural networks 

  15. Geophys. Res. Lett. Hsu 37 7 256 2010 10.1029/2009GL042243 Global long-lived chemical modes excited in a 3-D chemistry transport model: stratospheric N2O, NOy, O3 and CH4 chemistry 

  16. Sensors Huang 18 7 2220 2018 10.3390/s18072220 A deep cnn-lstm model for particulate matter (PM2. 5) forecasting in smart cities 

  17. Environ. Model. Softw Johansson 64 143 2015 10.1016/j.envsoft.2014.11.021 Fusion of meteorological and air quality data extracted from the web for personalized environmental information services 

  18. Environ. Pollut. Kampa 151 2 362 2008 10.1016/j.envpol.2007.06.012 Human health effects of air pollution 

  19. Int. J. Hyg Environ. Health Kappos 207 4 399 2004 10.1078/1438-4639-00306 Health effects of particles in ambient air 

  20. Int. J. Environ. Pollut. Karaca 28 3/4 310 2006 10.1504/IJEP.2006.011214 NN-AirPol: a neural-networks-based method for air pollution evaluation and control 

  21. Environ. Model. Softw Kiesewetter 74 201 2015 10.1016/j.envsoft.2015.02.022 Modelling PM2. 5 impact indicators in Europe: health effects and legal compliance 

  22. J. Hazard Mater. Kim 154 1-3 440 2008 10.1016/j.jhazmat.2007.10.042 Spatial distribution of particulate matter (PM10 and PM2. 5) in Seoul Metropolitan Subway stations 

  23. Krizhevsky 2011 Using Very Deep Autoencoders for Content-Based Image Retrieval 

  24. Neurocomputing Kuremoto 137 47 2014 10.1016/j.neucom.2013.03.047 Time series forecasting using a deep belief network with restricted Boltzmann machines 

  25. Lange 2010 The 2010 International Joint Conference on Neural Networks (IJCNN) Deep auto-encoder neural networks in reinforcement learning 

  26. Lancet Lim 380 9859 2224 2012 10.1016/S0140-6736(12)61766-8 A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010 

  27. Lin 2017 Proceedings of the 3rd Workshop on Noisy User-Generated Text Multi-channel bilstm-crf model for emerging named entity recognition in social media 

  28. J. Geophys. Res.: Atmosphere Liu 109 D22 2004 Mapping annual mean ground­level PM2. 5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States 

  29. Atmos. Environ. Liu 44 20 2415 2010 10.1016/j.atmosenv.2010.03.035 Understanding of regional air pollution over China using CMAQ, part I performance evaluation and seasonal variation 

  30. Liu 2017 NIRS Feature Extraction Based on Deep Auto-Encoder Neural Network 

  31. Chemosphere Lu 59 5 693 2005 10.1016/j.chemosphere.2004.10.032 Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends 

  32. J. Geophys. Res.: Atmosphere McKeen 112 D10 2007 10.1029/2006JD007608 Evaluation of several PM2. 5 forecast models using data collected during the ICARTT/NEAQS 2004 field study 

  33. Meng 2017 2017 International Joint Conference on Neural Networks (IJCNN) Relational autoencoder for feature extraction 

  34. Mohamed 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU) Deep Bi-directional Recurrent Networks Over Spectral Windows 

  35. Speech Commun. Ogawa 89 70 2017 10.1016/j.specom.2017.02.009 Error detection and accuracy estimation in automatic speech recognition using deep bidirectional recurrent neural networks 

  36. Ong 2014 Big Data (Big Data), 2014 IEEE International Conference on Dynamic pre-training of deep recurrent neural networks for predicting environmental monitoring data 

  37. Meas. Control Technol. QIN 2 2017 Combination of 3D CNNs and LSTMs and its application in activity recognition 

  38. Atmos. Environ. Saide 45 16 2769 2011 10.1016/j.atmosenv.2011.02.001 Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model 

  39. Atmos. Environ. Part B - Urban Atmos. Scheffe 27 1 23 1993 10.1016/0957-1272(93)90043-6 A review of the development and application of the urban airshed model 

  40. Advances in Neural Information Processing Systems Scholkopf 19 153 2007 Greedy Layer-Wise Training of Deep Networks 

  41. Mech. Syst. Signal Process. Shao 95 187 2017 10.1016/j.ymssp.2017.03.034 A novel deep autoencoder feature learning method for rotating machinery fault diagnosis 

  42. AGU Fall Meet. Abstr. So 2014 Relationship of regional PM2. 5 variations in east Asia and climate variability in the North Pacific 

  43. Environ. Model. Softw Solazzo 24 3 381 2009 10.1016/j.envsoft.2008.08.001 Improved parameterisation for the numerical modelling of air pollution within an urban street canyon 

  44. Adv. Neural Inf. Process. Syst. Stollenga 2015 Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation 

  45. J. Environ. Manag. Sun 188 144 2017 10.1016/j.jenvman.2016.12.011 Daily PM2. 5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm 

  46. Sundermeyer 2012 Thirteenth Annual Conference of the International Speech Communication Association LSTM neural networks for language modeling 

  47. Environ. Model. Softw Taylor 22 6 797 2007 10.1016/j.envsoft.2006.03.002 Environmental time series analysis and forecasting with the Captain toolbox 

  48. J. Biomed. Inform. Tutubalina 2018 10.1016/j.jbi.2018.06.006 Medical concept normalization in social media posts with recurrent neural networks 

  49. Ecol. Model. Viotti 148 1 27 2002 10.1016/S0304-3800(01)00434-3 Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia 

  50. Water Air Soil Pollut. Wang 130 1-4 391 2001 10.1023/A:1013833217916 A nested air quality prediction modeling system for urban and regional scales: application for high-ozone episode in Taiwan 

  51. Xi 2015 Service Operations and Logistics, and Informatics (SOLI), 2015 IEEE International Conference on A comprehensive evaluation of air pollution prediction improvement by a machine learning method 

  52. J. Signal Process. Syst. Xu 1 2017 A bidirectional LSTM approach with word embeddings for sentence boundary detection 

  53. Optik Zhao 158 266 2017 10.1016/j.ijleo.2017.12.038 Applying deep bidirectional LSTM and mixture density network for basketball trajectory prediction 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로