$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Overexpression of Chlamydomonas reinhardtii LCIA (CrLCIA) gene increases growth of Nannochloropsis salina CCMP1776

Algal research, v.46, 2020년, pp.101807 -   

Vikramathithan, Jayaraman (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ,  Hwangbo, Kwon (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ,  Lim, Jong-Min (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ,  Lim, Ka-Min (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ,  Kang, Da Yeon (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ,  Park, Youn-Il (Department of Biological Sciences, Chungnam National University) ,  Jeong, Won-Joong (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology)

Abstract AI-Helper 아이콘AI-Helper

Abstract Most aquatic photosynthetic organisms have developed inorganic carbon-concentrating mechanisms (CCMs) to compensate for the kinetic constraints of CO2 concentration in the vicinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which functions in the first steps of carbon fi...

Keyword

참고문헌 (31)

  1. Annu. Rev. Plant Biol. Spreitzer 53 449 2002 10.1146/annurev.arplant.53.100301.135233 Rubisco: structure, regulatory interactions, and possibilities for a better enzyme 

  2. J. Exp. Bot. Spalding 59 1463 2008 10.1093/jxb/erm128 Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters 

  3. Photosynth. Res. Moroney 109 2011 133 2011 10.1007/s11120-011-9635-3 The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles 

  4. Plant Physiol. Ma 156 884 2011 10.1104/pp.111.173922 Identification of a novel gene, CIA6, required for normal pyrenoid formation in Chlamydomonas reinhardtii 

  5. Proc. Natl. Acad. Sci. U. S. A. Meyer 109 19474 2012 10.1073/pnas.1210993109 Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas 

  6. Annu. Rev. Plant Biol. Giordano 56 99 2005 10.1146/annurev.arplant.56.032604.144052 CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution 

  7. J. Exp. Bot. Meyer 4 769 2013 10.1093/jxb/ers390 Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future 

  8. Proc. Natl. Acad. Sci. U. S. A. Kilian 108 21265 2011 10.1073/pnas.1105861108 High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp 

  9. Plant J. Wei 89 1236 2017 10.1111/tpj.13411 RNAi-based targeted gene knockdown in the model oleaginous microalgae Nannochloropsis oceanica 

  10. Proc. Natl. Acad. Sci. U. S. A. Gee 114 4537 2017 10.1073/pnas.1700139114 The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica 

  11. Metab. Eng. Wei 54 96 2019 10.1016/j.ymben.2019.03.004 Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO2 level 

  12. J. Phycol. Sukenik 33 969 1997 10.1111/j.0022-3646.1997.00969.x Uptake, efflux, and photosynthetic utilization of inorganic carbon by the marine eustigmatophyte Nannochloropsis sp 

  13. Curr. Biol. Tchernov 7 723 1997 10.1016/S0960-9822(06)00330-7 Sustained net CO2 evolution during photosynthesis by marine microorganisms 

  14. Planta Huertas 211 43 2000 10.1007/s004250000254 Light-dependent bicarbonate uptake and CO2 efflux in the marine microalga Nannochloropsis gaditana 

  15. Plant Physiol. Wang 166 2040 2014 10.1104/pp.114.248294 Acclimation to very-low CO2: contribution of LCIB and LCIA to inorganic carbon uptake in Chlamydomonas reinhardtii 

  16. Plant Physiol. Miura 135 1595 2004 10.1104/pp.104.041400 Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii 

  17. Protist Mariscal 157 421 2006 10.1016/j.protis.2006.06.003 Differential regulation of the Chlamydomonas Nar1 gene family by carbon and nitrogen 

  18. J. Appl. Phycol. Jeon 31 1153 2019 10.1007/s10811-018-1599-7 Optimization of electroporation-based multiple pulses and further improvement of transformation efficiency using bacterial conditioned medium for Nannochloropsis salina 

  19. FEBS Lett. Park 444 102 1999 10.1016/S0014-5793(99)00037-X Role of a novel photosystem II-associated carbonic anhydrase in photosynthetic carbon assimilation in Chlamydomonas reinhardtii 

  20. Planta Haglund 188 1 1992 10.1007/BF01160705 Role of external carbonic anhydrase in light-dependent alkalization by Fucus serratus L. and Laminaria saccharina (L.) Lamour. (Phaeophyta) 

  21. USFCC News Lett. Sasser 20 1 1990 Identification of bacteria by gas chromatography of cellular fatty acids 

  22. Biotechnol. Biofuels Wei 12 168 2019 10.1186/s13068-019-1506-8 Transcriptomic and proteomic responses to very low CO2 suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica 

  23. Mukherjee 2013 Investigation of the Role of Putative Inorganic Carbon Transporters in the Carbon Dioxide Concentrating Mechanisms of Chlamydomonas reinhardtii 

  24. Proc. Natl. Acad. Sci. U. S. A. Yamano 112 7315 2015 10.1073/pnas.1501659112 Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii 

  25. FEMS Microbiol. Rev. Aizawa 39 215 1986 10.1111/j.1574-6968.1986.tb01860.x Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria 

  26. J. Exp. Bot. Bozzo 51 1341 2000 Active transport of CO2 and bicarbonate is induced in response to external CO2 concentration in the green alga Chlorella kessleri 

  27. Annu. Rev. Plant Physiol. Plant Mol. Biol. Kaplan 50 539 1999 10.1146/annurev.arplant.50.1.539 CO2 concentrating mechanisms in photosynthetic microorganisms 

  28. Plant Cell Physiol. Yamano 51 1453 2010 10.1093/pcp/pcq105 Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii 

  29. Annu. Rev. Mar. Sci. Doney 1 169 2009 10.1146/annurev.marine.010908.163834 Ocean acidification: the other CO2 problem 

  30. Plant Cell Brueggeman 24 1860 2012 10.1105/tpc.111.093435 Activation of the carbon concentrating mechanism by CO2 deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii 

  31. Proc. Natl. Acad. Sci. U. S. A. Duanmu 106 5990 2009 10.1073/pnas.0812885106 Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3? transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로