$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Recent advances of biomaterials in biotherapy 원문보기

Regenerative biomaterials, v.3 no.2, 2016년, pp.99 - 105  

Li, Ling (Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China) ,  He, Zhi-Yao (Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China) ,  Wei, Xia-Wei (Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China) ,  Wei, Yu-Quan (Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China)

Abstract AI-Helper 아이콘AI-Helper

Biotherapy mainly refers to the intervention and the treatment of major diseases with biotechnologies or bio-drugs, which include gene therapy, immunotherapy (vaccines and antibodies), bone marrow transplantation and stem-cell therapy. In recent years, numerous biomaterials have emerged and were uti...

Keyword

참고문헌 (111)

  1. 1 Thorne SH Negrin RS Contag CH. Synergistic antitumor effects of immune cell-viral biotherapy . Science 2006 ; 311 : 1780 – 4 . 16556847 

  2. 2 Gretch D. Advocating the concept of GB virus C biotherapy against AIDS . Clin Infect Dis 2012 ; 55 : 1020 – 21 . 22752513 

  3. 3 Naji A Rouas ‐Freiss N. Concise review: combining human leukocyte antigen G and mesenchymal stem cells for immunosuppressant biotherapy . Stem Cells 2013 ; 31 : 2296 – 303 . 23922260 

  4. 4 van Rooij E Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles . Nat Rev Drug Discov 2012 ; 11 : 860 – 72 . 23080337 

  5. 5 Jieheng W Angang Y Weihong W. Current status of bench-to-bedside translation of cancer therapeutic antibodies . Chin J Cancer Biother 2014 ; 3 : 023 . 

  6. 6 Abdelbary H Brown CW Werier J Using targeted virotherapy to treat a resistant ewing sarcoma model: from the bedside to the bench and back . Sci World J 2014 ; 2014 : 171439 . 

  7. 7 Uckun FM. Monoclonal antibody (mAb)-based biotherapy options for b-lineage non-Hodgkin’s lymphoma (NHL) . Trans Med 2013 ; 3 : e118 . 

  8. 8 Chen X Lin X Zhao J A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs . Mol Ther 2008 ; 16 : 749 – 56 . 18362930 

  9. 9 Su X Zhang L Jin L Immunotherapy with cytokine-induced killer cells in metastatic renal cell carcinoma . Cancer Biother Radiopharm 2010 ; 25 : 465 – 70 . 20701541 

  10. 10 Niidome T Huang L. Gene therapy progress and prospects: nonviral vectors . Gene Ther 2002 ; 9 : 1647 – 52 . 12457277 

  11. 11 Rosenberg SA. Progress in human tumour immunology and immunotherapy . Nature 2001 ; 411 : 380 – 4 . 11357146 

  12. 12 Segers VF Lee RT. Stem-cell therapy for cardiac disease . Nature 2008 ; 451 : 937 – 42 . 18288183 

  13. 13 Huang X Liu D Liu K Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies . Bone Marrow Transpl 2006 ; 38 : 291 – 7 . 

  14. 14 Kim SU De Vellis J. Stem cell‐based cell therapy in neurological diseases: a review . J Neurosci Res 2009 ; 87 : 2183 – 200 . 19301431 

  15. 15 Childs R Chernoff A Contentin N Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation . N Engl J Med 2000 ; 343 : 750 – 8 . 10984562 

  16. 16 Swami A Shi J Gadde S. Nanoparticles for targeted and temporally controlled drug delivery In: Svenson S Prud’homme RK (eds). Multifunctional Nanoparticles for Drug Delivery Applications . New York : Springer 2012 ; 9 – 29 . 

  17. 17 Nitta SK Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering . Int J Mol Sci 2013 ; 14 : 1629 – 54 . 23344060 

  18. 18 Hotaling NA Tang L Irvine DJ Biomaterial strategies for immunomodulation . Annu Rev Biomed Eng 2015 ; 17 : 371 – 49 . 

  19. 19 Tian H Tang Z Zhuang X Biodegradable synthetic polymers: preparation, functionalization and biomedical application . Prog Polym Sci 2012 ; 37 : 237 – 80 . 

  20. 20 Chu C-C. Biodegradable polymers: an overview In: Encyclopedia of Biomaterials and Biomedical Engineering . New York : Informa Healthcare USA, Inc , 2008 , 195 – 206 . 

  21. 21 Croisier F Jérôme C. Chitosan-based biomaterials for tissue engineering . Eur Polym J 2013 ; 49 : 780 – 92 . 

  22. 22 Burdick JA Prestwich GD. Hyaluronic acid hydrogels for biomedical applications . Adv Mater 2011 ; 23 : H41 – 56 . 21394792 

  23. 23 Lee KY Mooney DJ. Alginate: properties and biomedical applications . Prog Polym Sci 2012 ; 37 : 106 – 26 . 22125349 

  24. 24 Centlivre M Legrand N Klamer S Preclinical in vivo evaluation of the safety of a multi-shRNA-based gene therapy against HIV-1 . Mol Ther Nucl Acids 2013 ; 2 : e120 

  25. 25 Cavazzana-Calvo M Hacein-Bey S de Saint Basile G Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease . Science 2000 ; 288 : 669 – 72 . 10784449 

  26. 26 Ashley CE Carnes EC Epler KE Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers . ACS Nano 2012 ; 6 : 2174 – 88 . 22309035 

  27. 27 Li J Zheng C Cansiz S Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy . J Am Chem Soc 2015 ; 137 : 1412 – 5 . 25581100 

  28. 28 Baum C Kustikova O Modlich U Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors . Hum Gene Ther 2006 ; 17 : 253 – 63 . 16544975 

  29. 29 Bessis N GarciaCozar F Boissier M. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms . Gene Ther 2004 ; 11 : S10 – S7 . 15454952 

  30. 30 Thomas CE Ehrhardt A Kay MA. Progress and problems with the use of viral vectors for gene therapy . Nat Rev Genet 2003 ; 4 : 346 – 58 . 12728277 

  31. 31 Pack DW Hoffman AS Pun S Design and development of polymers for gene delivery . Nat Rev Drug Discov 2005 ; 4 : 581 – 93 . 16052241 

  32. 32 Mintzer MA Simanek EE. Nonviral vectors for gene delivery . Chem Rev 2008 ; 109 : 259 – 302 . 19053809 

  33. 33 Guo X Huang L. Recent advances in nonviral vectors for gene delivery . Accounts Chem Res 2011 ; 45 : 971 – 9 . 

  34. 34 Li L He Z-Y Wei X-W Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors . Hum Gene Ther 2015 ; 26 : 452 – 62 . 26176432 

  35. 35 Whitehead KA Langer R Anderson DG. Knocking down barriers: advances in siRNA delivery . Nat Rev Drug Discov 2009 ; 8 : 129 – 38 . 19180106 

  36. 36 He Z-Y Wei X-W Luo M Folate-linked lipoplexes for short hairpin RNA targeting Claudin-3 delivery in ovarian cancer xenografts . J Control Release 2013 ; 172 : 679 – 89 . 24144916 

  37. 37 Hui K Ang P Huang L Phase I study of immunotherapy of cutaneous metastases of human carcinoma using allogeneic and xenogeneic MHC DNA-liposome complexes . Gene Ther 1997 ; 4 : 783 – 90 . 9338006 

  38. 38 Clements BA Incani V Kucharski C A comparative evaluation of poly-l-lysine-palmitic acid and Lipofectamine™ 2000 for plasmid delivery to bone marrow stromal cells . Biomaterials 2007 ; 28 : 4693 – 704 . 17686514 

  39. 39 Bikram M Ahn C-H Chae SY. Biodegradable Poly (ethylene glycol)-c o-poly (l-lysine)-g-histidine Multiblock Copolymers for Nonviral Gene Delivery . Macromolecules 2004 ; 37 : 1903 – 16 . 

  40. 40 Kano A Moriyama K Yamano T Grafting of poly (ethylene glycol) to poly-lysine augments its lifetime in blood circulation and accumulation in tumors without loss of the ability to associate with siRNA . J Control Release 2011 ; 149 : 2 – 7 . 20005270 

  41. 41 Christie RJ Matsumoto Y Miyata K Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection . ACS Nano 2012 ; 6 : 5174 – 89 . 22575090 

  42. 42 Boussif O Lezoualc’h F Zanta MA. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo : polyethylenimine . Proc Natl Acad Sci 1995 ; 92 : 7297 – 301 . 7638184 

  43. 43 Kircheis R Wightman L Wagner E. Design and gene delivery activity of modified polyethylenimines . Adv Drug Deliver Rev 2001 ; 53 : 341 – 58 . 

  44. 44 Kunath K von Harpe A Fischer D Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine . J Control Release 2003 ; 89 : 113 – 25 . 12695067 

  45. 45 Sawant RR Sriraman SK Navarro G. Polyethyleneimine-lipid conjugate-based pH-sensitive micellar carrier for gene delivery . Biomaterials 2012 ; 33 : 3942 – 51 . 22365809 

  46. 46 Zheng M Zhong Y Meng F Lipoic acid modified low molecular weight polyethylenimine mediates nontoxic and highly potent in vitro gene transfection . Mol Pharm 2011 ; 8 : 2434 – 43 . 21923163 

  47. 47 Neamnark A Suwantong O KC RB Aliphatic lipid substitution on 2 kDa polyethylenimine improves plasmid delivery and transgene expression . Mol Pharm 2009 ; 6 : 1798 – 815 . 19719326 

  48. 48 Merkel OM Beyerle A Librizzi D Nonviral siRNA delivery to the lung: investigation of PEG− PEI polyplexes and their in vivo performance . Mol Pharm 2009 ; 6 : 1246 – 60 . 19606864 

  49. 49 Liang B He M-L Chan C-Y The use of folate-PEG-grafted-hybranched-PEI nonviral vector for the inhibition of glioma growth in the rat . Biomaterials 2009 ; 30 : 4014 – 20 . 19427690 

  50. 50 Cheng H Zhu J-L Zeng X Targeted gene delivery mediated by folate-polyethylenimine-block-poly (ethylene glycol) with receptor selectivity . Bioconjug Chem 2009 ; 20 : 481 – 7 . 19191579 

  51. 51 Wang M Tucker JD Lu P. Tris [2-(acryloyloxy) ethyl] isocyanurate cross-linked low-molecular-weight polyethylenimine as gene delivery carriers in cell culture and dystrophic mdx mice . Bioconjug Chem 2012 ; 23 : 837 – 45 . 22443086 

  52. 52 Saito G Swanson JA Lee K-D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities . Adv Drug Deliver Rev 2003 ; 55 : 199 – 215 . 

  53. 53 Alvarez RD Sill MW Davidson SA A phase II trial of intraperitoneal EGEN-001, an IL-12 plasmid formulated with PEG–PEI–cholesterol lipopolymer in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer: A Gynecologic Oncology Group Study . Gynecol Oncol 2014 ; 133 : 433 – 8 . 24708919 

  54. 54 Shah N Steptoe RJ Parekh HS. Low‐generation asymmetric dendrimers exhibit minimal toxicity and effectively complex DNA . J Pept Sci 2011 ; 17 : 470 – 8 . 21351322 

  55. 55 Biswas S Deshpande PP Navarro G Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery . Biomaterials 2013 ; 34 : 1289 – 301 . 23137395 

  56. 56 Kim J-B Choi JS Nam K. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg . J Control Release 2006 ; 114 : 110 – 7 . 16842881 

  57. 57 Yu T Liu X Bolcato-Bellemin AL An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo . Angew Chem Int Edit 2012 ; 124 : 8606 – 12 . 

  58. 58 Kwon S Park JH Chung H Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid . Langmuir 2003 ; 19 : 10188 – 93 . 

  59. 59 Ghosn B Singh A Li M Efficient gene silencing in lungs and liver using imidazole-modified chitosan as a nanocarrier for small interfering RNA . Oligonucleotides 2010 ; 20 : 163 – 72 . 20565242 

  60. 60 Wong K Sun G Zhang X PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo . Bioconjug Chem 2006 ; 17 : 152 – 8 . 16417264 

  61. 61 Keeney M Ong S-G Padilla A Development of Poly (β-amino ester)-based biodegradable nanoparticles for nonviral delivery of minicircle DNA . ACS Nano 2013 ; 7 : 7241 – 50 . 23837668 

  62. 62 Zhou J Liu J Cheng CJ. Biodegradable poly (amine-co-ester) terpolymers for targeted gene delivery . Nat Mater 2012 ; 11 : 82 – 90 . 22138789 

  63. 63 Zhu Y Tang G-P Xu F-J. Efficient poly (N-3-hydroxypropyl) aspartamide-based carriers via ATRP for gene delivery . ACS Appl Mater Interfaces 2013 ; 5 : 1840 – 8 . 23421311 

  64. 64 Nam HY Nam K Lee M Dendrimer type bio-reducible polymer for efficient gene delivery . J Control Release 2012 ; 160 : 592 – 600 . 22546681 

  65. 65 Lauring AS Jones JO Andino R. Rationalizing the development of live attenuated virus vaccines . Nat Biotechnol 2010 ; 28 : 573 – 9 . 20531338 

  66. 66 Leleux J Roy K. Micro and nanoparticle‐based delivery systems for vaccine immunotherapy: an immunological and materials perspective . Adv Healthc Mater 2013 ; 2 : 72 – 94 . 23225517 

  67. 67 Coffman RL Sher A Seder RA. Vaccine adjuvants: putting innate immunity to work . Immunity 2010 ; 33 : 492 – 503 . 21029960 

  68. 68 Luo Z Li P Deng J Cationic polypeptide micelle-based antigen delivery system: a simple and robust adjuvant to improve vaccine efficacy . J Control Release 2013 ; 170 : 259 – 67 . 23742880 

  69. 69 De Temmerman M-L Rejman J Demeester J Particulate vaccines: on the quest for optimal delivery and immune response . Drug Discov Today 2011 ; 16 : 569 – 82 . 21570475 

  70. 70 Singh A Peppas NA. Hydrogels and scaffolds for immunomodulation . Adv Mater 2014 ; 26 : 6530 – 41 . 25155610 

  71. 71 O’Hagan DT De Gregorio E. The path to a successful vaccine adjuvant–‘the long and winding road’ . Drug Discov Today 2009 ; 14 : 541 – 51 . 19508916 

  72. 72 Foged C Hansen J Agger EM. License to kill: Formulation requirements for optimal priming of CD8+ CTL responses with particulate vaccine delivery systems . Eur J Pharm Sci 2012 ; 45 : 482 – 91 . 21888971 

  73. 73 Nordly P Madsen HB Nielsen HM. Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators . Expert Opin Drug Del 2009 ; 6 : 657 – 72 . 

  74. 74 Butts C Socinski MA Mitchell PL Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial . Lancet Oncol 2014 ; 15 : 59 – 68 . 24331154 

  75. 75 Melero I Gaudernack G Gerritsen W Therapeutic vaccines for cancer: an overview of clinical trials . Nat Rev Clin Oncol 2014 ; 11 : 509 – 24 . 25001465 

  76. 76 De Koker S Lambrecht BN Willart MA. Designing polymeric particles for antigen delivery . Chem Soc Rev 2011 ; 40 : 320 – 39 . 21060941 

  77. 77 Waeckerle-Men Y Groettrup M. PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines . Adv Drug Deliver Rev 2005 ; 57 : 475 – 82 . 

  78. 78 Fischer S Schlosser E Mueller M Concomitant delivery of a CTL-restricted peptide antigen and CpG ODN by PLGA microparticles induces cellular immune response . J Drug Target 2009 ; 17 : 652 – 61 . 19622019 

  79. 79 De Koker S De Geest BG Singh SK Polyelectrolyte microcapsules as antigen delivery vehicles to dendritic cells: uptake, processing, and cross‐presentation of encapsulated antigens . Angew Chem Int Edit 2009 ; 48 : 8485 – 9 . 

  80. 80 Sexton A Whitney PG Chong S-F A protective vaccine delivery system for in vivo T cell stimulation using nanoengineered polymer hydrogel capsules . ACS Nano 2009 ; 3 : 3391 – 400 . 19824668 

  81. 81 Ali OA Huebsch N Cao L Infection-mimicking materials to program dendritic cells in situ . Nat Mater 2009 ; 8 : 151 – 8 . 19136947 

  82. 82 Bach F Albertini R Joo P Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome . Lancet 1968 ; 292 : 1364 – 6 . 4177931 

  83. 83 Gatti R Meuwissen H Allen H Immunological reconstitution of sex-linked lymphopenic immunological deficiency . Lancet 1968 ; 292 : 1366 – 9 . 4177932 

  84. 84 Segers VF Lee RT. Biomaterials to enhance stem cell function in the heart . Circ Res 2011 ; 109 : 910 – 22 . 21960724 

  85. 85 Magne D Vinatier C Julien M Mesenchymal stem cell therapy to rebuild cartilage . Trends Mol Med 2005 ; 11 : 519 – 26 . 16213191 

  86. 86 Place ES Evans ND Stevens MM. Complexity in biomaterials for tissue engineering . Nat Mater 2009 ; 8 : 457 – 70 . 19458646 

  87. 87 Dai W Hale SL Kay GL Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as assessed by nanoparticle technology . Regen Med 2009 ; 4 : 387 – 95 . 19438314 

  88. 88 Danoviz ME Nakamuta JS Marques F. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention . PLoS One 2010 ; 5 : e12077 20711471 

  89. 89 Liu J Hu Q Wang Z. Autologous stem cell transplantation for myocardial repair . Am J Physiol Heart C 2004 ; 287 : H501 – H11 . 

  90. 90 Lin Y-D Yeh M-L Yang Y-J Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs . Circulation 2010 ; 122 : S132 – S41 . 20837904 

  91. 91 Wang Y Kim H-J Vunjak-Novakovic G. Stem cell-based tissue engineering with silk biomaterials . Biomaterials 2006 ; 27 : 6064 – 82 . 16890988 

  92. 92 Dawson E Mapili G Erickson K Biomaterials for stem cell differentiation . Adv Drug Deliver Rev 2008 ; 60 : 215 – 28 . 

  93. 93 Chai C Leong KW. Biomaterials approach to expand and direct differentiation of stem cells . Mol Ther 2007 ; 15 : 467 – 80 . 17264853 

  94. 94 Vinatier C Bouffi C Merceron C Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy . Curr Stem Cell Res Ther 2009 ; 4 : 318 19804369 

  95. 95 Tsubouchi M Matsui S Banno Y. Overview of the clinical application of regenerative medicine products in Japan . Health Policy 2008 ; 88 : 62 – 72 . 18395290 

  96. 96 Laurencin CT Ambrosio A Borden M Tissue engineering: orthopedic applications . Annu Rev Biomed Eng 1999 ; 1 : 19 – 46 . 11701481 

  97. 97 Salgado AJ Coutinho OP Reis RL. Bone tissue engineering: state of the art and future trends . Macromol Biosci 2004 ; 4 : 743 – 65 . 15468269 

  98. 98 Gomes S Leonor IB Mano JF Natural and genetically engineered proteins for tissue engineering . Prog Polym Sci 2012 ; 37 : 1 – 17 . 22058578 

  99. 99 Dhandayuthapani B Yoshida Y Maekawa T. Polymeric scaffolds in tissue engineering application: a review . Int J Polym Sci 2011 ; 2011 : 

  100. 100 Khademhosseini A Vacanti JP Langer R. Progress in tissue engineering . Sci Am 2009 ; 300 : 64 – 71 . 19438051 

  101. 101 Tsang VL Chen AA Cho LM Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels . Faseb J 2007 ; 21 : 790 – 801 . 17197384 

  102. 102 Möller S Weisser J Bischoff S. Dextran and hyaluronan methacrylate based hydrogels as matrices for soft tissue reconstruction . Biomol Eng 2007 ; 24 : 496 – 504 . 17884723 

  103. 103 Wang T-W Spector M. Development of hyaluronic acid-based scaffolds for brain tissue engineering . Acta Biomater 2009 ; 5 : 2371 – 84 . 19403351 

  104. 104 Seo S-J Kim I-Y Choi Y-J Enhanced liver functions of hepatocytes cocultured with NIH 3T3 in the alginate/galactosylated chitosan scaffold . Biomaterials 2006 ; 27 : 1487 – 95 . 16188312 

  105. 105 Fan J Shang Y Yuan Y. Preparation and characterization of chitosan/galactosylated hyaluronic acid scaffolds for primary hepatocytes culture . J Mater Sci Mater Med 2010 ; 21 : 319 – 27 . 19641850 

  106. 106 Madaghiele M Piccinno A Saponaro M Collagen-and gelatine-based films sealing vascular prostheses: evaluation of the degree of crosslinking for optimal blood impermeability . J Mater Sci Mater Med 2009 ; 20 : 1979 – 89 . 19449199 

  107. 107 Liu Y Lim J Teoh S-H. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering . Biotechnol Adv 2013 ; 31 : 688 – 705 . 23142624 

  108. 108 Cao H Kuboyama N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering . Bone 2010 ; 46 : 386 – 95 . 19800045 

  109. 109 Bose S Roy M Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds . Trends Biotechnol 2012 ; 30 : 546 – 54 . 22939815 

  110. 110 Epstein NE. Pros, cons, and costs of INFUSE in spinal surgery . Surg Neurol Int 2011 ; 2 : 10 21297932 

  111. 111 Shrivats AR McDermott MC Hollinger JO. Bone tissue engineering: state of the union . Drug Discov Today 2014 ; 19 : 781 – 6 . 24768619 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로