$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Dry Electrode-Based Body Fat Estimation System with Anthropometric Data for Use in a Wearable Device 원문보기

Sensors, v.19 no.9, 2019년, pp.2177 -   

Shin, Seung-Chul (The Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-dong, Seodaemun-gu, Seoul 03722, Korea) ,  Lee, Jinkyu (sc1225.shin@yonsei.ac.kr (S.-C.S.)) ,  Choe, Soyeon (shuya@dsp.yonsei.ac.kr (J.L.)) ,  Yang, Hyuk In (schoe@dsp.yonsei.ac.kr (S.C.)) ,  Min, Jihee (The Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-dong, Seodaemun-gu, Seoul 03722, Korea) ,  Ahn, Ki-Yong (sc1225.shin@yonsei.ac.kr (S.-C.S.)) ,  Jeon, Justin Y. (shuya@dsp.yonsei.ac.kr (J.L.)) ,  Kang, Hong-Goo (schoe@dsp.yonsei.ac.kr (S.C.))

Abstract AI-Helper 아이콘AI-Helper

The bioelectrical impedance analysis (BIA) method is widely used to predict percent body fat (PBF). However, it requires four to eight electrodes, and it takes a few minutes to accurately obtain the measurement results. In this study, we propose a faster and more accurate method that utilizes a smal...

주제어

참고문헌 (43)

  1. 1. Casselman J. Onopa N. Khansa L. Wearable healthcare: Lessons from the past and a peek into the future Telemat. Inform. 2017 34 1011 1023 10.1016/j.tele.2017.04.011 

  2. 2. Gutin B. Islam S. Manos T. Cucuzzo N. Smith C. Stachura M.E. Relation of percentage of body fat and maximal aerobic capacity to risk factors for atherosclerosis and diabetes in black and white seven-to eleven-year-old children J. Pediatr. 1994 125 847 852 10.1016/S0022-3476(05)81997-3 7996354 

  3. 3. Renehan A.G. Tyson M. Egger M. Heller R.F. Zwahlen M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies Lancet 2008 371 569 578 10.1016/S0140-6736(08)60269-X 18280327 

  4. 4. Vazquez G. Duval S. Jacobs D.R. Jr. Silventoinen K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: A meta-analysis Epidemiol. Rev. 2007 29 115 128 10.1093/epirev/mxm008 17494056 

  5. 5. Leahy S. O’Neill C. Sohun R. Jakeman P. A comparison of dual energy X-ray absorptiometry and bioelectrical impedance analysis to measure total and segmental body composition in healthy young adults Eur. J. Appl. Physiol. 2012 112 589 595 10.1007/s00421-011-2010-4 21614505 

  6. 6. Rubiano F. Nunez C. Heymsfield S. A comparison of body composition techniques Ann. N. Y. Acad. Sci. 2000 904 335 338 10.1111/j.1749-6632.2000.tb06477.x 10865766 

  7. 7. Heyward V.H. Wagner D.R. Applied Body Composition Assessment 2nd ed. Human Kinetics Champaign, IL, USA 2004 

  8. 8. Lukaski H.C. Bolonchuk W.W. Hall C.B. Siders W.A. Validation of tetrapolar bioelectrical impedance method to assess human body composition J. Appl. Physiol. 1986 60 1327 1332 10.1152/jappl.1986.60.4.1327 3700310 

  9. 9. Malavolti M. Mussi C. Poli M. Fantuzzi A. Salvioli G. Battistini N. Bedogni G. Cross-calibration of eight-polar bioelectrical impedance analysis versus dual-energy X-ray absorptiometry for the assessment of total and appendicular body composition in healthy subjects aged 21–82 years Ann. Hum. Biol. 2003 30 380 391 10.1080/0301446031000095211 12881138 

  10. 10. Foster K.R. Lukaski H.C. Whole-body impedance—What does it measure? Am. J. Clin. Nutr. 1996 64 388S 396S 10.1093/ajcn/64.3.388S 8780354 

  11. 11. Omron-Healthcare Body Fat Monitor HBF-306 Available online: https://images-eu.ssl-images-amazon.com/images/I/91U2Mvk%2B9cS.pdf (accessed on 10 May 2019) 

  12. 12. InBody Body Composition Analyzer Inbody-720 Available online: https://inbody.com/eng/product/inbody720.aspx (accessed on 10 May 2019) 

  13. 13. Tanita Body Fat Scales Available online: https://www.tanita.com/en/body-water-monitors-fat-scales/ (accessed on 10 May 2019) 

  14. 14. Jung M.H. Namkoong K. Lee Y. Koh Y.J. Eom K. Jang H. Bae J. Park J. Wrist-wearable bioelectrical impedance analyzer with contact resistance compensation function Proceedings of the 2016 IEEE SENSORS Orlando, FL, USA 30 October–3 November 2016 1 3 

  15. 15. Inbody InBodyBAND2 Available online: https://www.inbody.com/global/product/InBodyBAND_2.aspx (accessed on 10 May 2019) 

  16. 16. Kyle U.G. Bosaeus I. De Lorenzo A.D. Deurenberg P. Elia M. Gómez J.M. Heitmann B.L. Kent-Smith L. Melchior J.C. Pirlich M. Bioelectrical impedance analysis Part I: Review of principles and methods Clin. Nutr. 2004 23 1226 1243 10.1016/j.clnu.2004.06.004 15380917 

  17. 17. Jia W. Lu J. Xiang K. Bao Y. Lu H. Chen L. Prediction of abdominal visceral obesity from body mass index, waist circumference and waist-hip ratio in Chinese adults: Receiver operating characteristic curves analysis Biomed. Environ. Sci. BES 2003 16 206 211 14631825 

  18. 18. Brook R.D. Bard R.L. Rubenfire M. Ridker P.M. Rajagopalan S. Usefulness of visceral obesity (waist/hip ratio) in predicting vascular endothelial function in healthy overweight adults Am. J. Cardiol. 2001 88 1264 1269 10.1016/S0002-9149(01)02088-4 11728354 

  19. 19. Wang J. Thornton J.C. Russell M. Burastero S. Heymsfield S. Pierson R.N. Jr. Asians have lower body mass index (BMI) but higher percent body fat than do whites: Comparisons of anthropometric measurements Am. J. Clin. Nutr. 1994 60 23 28 10.1093/ajcn/60.1.23 8017333 

  20. 20. Lukaski H.C. Methods for the assessment of human body composition: Traditional and new Am. J. Clin. Nutr. 1987 46 537 556 10.1093/ajcn/46.4.537 3310598 

  21. 21. Durnin J. Rahaman M.M. The assessment of the amount of fat in the human body from measurements of skinfold thickness Br. J. Nutr. 1967 21 681 689 10.1079/BJN19670070 6052883 

  22. 22. Heyward V. ASEP methods recommendation: Body composition assessment J. Exerc. Physiol. Online 2001 4 1 12 

  23. 23. Fürstenberg A. Davenport A. Comparison of multifrequency bioelectrical impedance analysis and dual-energy X-ray absorptiometry assessments in outpatient hemodialysis patients Am. J. Kidney Dis. 2011 57 123 129 10.1053/j.ajkd.2010.05.022 20692749 

  24. 24. Mialich M.S. Sicchieri J.F. Junior A.A.J. Analysis of body composition: A critical review of the use of bioelectrical impedance analysis Int. J. Clin. Nutr. 2014 2 1 10 

  25. 25. Segal K.R. Burastero S. Chun A. Coronel P. Pierson R.N. Jr. Wang J. Estimation of extracellular and total body water by multiple-frequency bioelectrical-impedance measurement Am. J. Clin. Nutr. 1991 54 26 29 10.1093/ajcn/54.1.26 2058583 

  26. 26. O’brien C. Young A. Sawka M. Bioelectrical impedance to estimate changes in hydration status Int. J. Sports Med. 2002 23 361 366 10.1055/s-2002-33145 12165888 

  27. 27. Talma H. Chinapaw M. Bakker B. HiraSing R. Terwee C. Altenburg T. Bioelectrical impedance analysis to estimate body composition in children and adolescents: A systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error Obes. Rev. 2013 14 895 905 10.1111/obr.12061 23848977 

  28. 28. Haroun D. Taylor S.J. Viner R.M. Hayward R.S. Darch T.S. Eaton S. Cole T.J. Wells J.C. Validation of bioelectrical impedance analysis in adolescents across different ethnic groups Obesity 2010 18 1252 1259 10.1038/oby.2009.344 19875994 

  29. 29. Kyle U.G. Genton L. Karsegard L. Slosman D.O. Pichard C. Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years Nutrition 2001 17 248 253 10.1016/S0899-9007(00)00553-0 11312069 

  30. 30. Lohman T.G. Advances in body composition assessment Med. Sci. Sports Exerc. 1993 25 762 10.1249/00005768-199306000-00021 

  31. 31. Kotler D.P. Burastero S. Wang J. Pierson R. Prediction of body cell mass, fat-free mass, and total body water with bioelectrical impedance analysis: Effects of race, sex, and disease Am. J. Clin. Nutr. 1996 64 489S 497S 10.1093/ajcn/64.3.489S 8780369 

  32. 32. Deurenberg P. Leenen R. Weststrate J. Seidell J. Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: A cross-validation study Int. J. Obes. 1991 15 17 25 2010255 

  33. 33. Boulier A. Fricker J. Thomasset A.L. Apfelbaum M. Fat-free mass estimation by the two-electrode impedance method Am. J. Clin. Nutr. 1990 52 581 585 10.1093/ajcn/52.4.581 2403051 

  34. 34. Stolarczyk L.M. Heyward V.H. Hicks V.L. Baumgartner R.N. Predictive accuracy of bloelectrical impedance in estimating body composition of Native American women Am. J. Clin. Nutr. 1994 59 964 970 10.1093/ajcn/59.5.964 8172101 

  35. 35. Sun S.S. Chumlea W.C. Heymsfield S.B. Lukaski H.C. Schoeller D. Friedl K. Kuczmarski R.J. Flegal K.M. Johnson C.L. Hubbard V.S. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys Am. J. Clin. Nutr. 2003 77 331 340 10.1093/ajcn/77.2.331 12540391 

  36. 36. Heitmann B. Prediction of body water and fat in adult Danes from measurement of electrical impedance. A validation study Int. J. Obes. 1990 14 789 802 2228410 

  37. 37. Choi A. Kim J.Y. Jo S. Jee J.H. Heymsfield S.B. Bhagat Y.A. Kim I. Cho J. Smartphone-based bioelectrical impedance analysis devices for daily obesity management Sensors 2015 15 22151 22166 10.3390/s150922151 26364636 

  38. 38. Tomtom Fitness Tracker Available online: https://www.tomtom.com/en_us/sports/fitness-trackers/fitness-tracker-touch/black-large/ (accessed on 10 May 2019) 

  39. 39. Demura S. Sato S. Kitabayashi T. Percentage of total body fat as estimated by three automatic bioelectrical impedance analyzers J. Physiol. Anthropol. Appl. Hum. Sci. 2004 23 93 99 10.2114/jpa.23.93 

  40. 40. Chi Y.M. Jung T.P. Cauwenberghs G. Dry-contact and noncontact biopotential electrodes: Methodological review IEEE Rev. Biomed. Eng. 2010 3 106 119 10.1109/RBME.2010.2084078 22275204 

  41. 41. Kingma D.P. Ba J. Adam: A method for stochastic optimization arXiv 2014 1412.6980 

  42. 42. Strutz T. Data Fitting and Uncertainty: A Practical Introduction to Weighted Least Squares and beyond Vieweg and Teubner New York, NY, USA 2010 

  43. 43. Nuzzo R. Scientific method: Statistical errors Nat. News 2014 506 150 10.1038/506150a 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로