$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] The performance of green carbon as a backbone for hydrogen storage materials

International journal of hydrogen energy, v.45 no.17, 2020년, pp.10516 - 10522  

Jang, Hyun-Seok (Department of Physics, Incheon National University) ,  Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University) ,  Hong, Won G. (Electron Microscopy Research Center, Korea Basic Science Institute) ,  Lee, Sang Moon (Electron Microscopy Research Center, Korea Basic Science Institute) ,  Jeon, Jun Woo (Department of Physics, Incheon National University) ,  Lee, Chang Yeon (Department of Energy and Chemical Engineering, Incheon National University) ,  Kim, Hae Jin (Electron Microscopy Research Center, Korea Basic Science Institute) ,  Kim, Byung Hoon (Department of Physics, Incheon National University)

Abstract AI-Helper 아이콘AI-Helper

Abstract We investigate the use of carbonized bamboo, which has an organic porous structure, as a hydrogen storage material. Bamboo samples were thermally treated at 800, 900, 1000, and 1100 °C for 24 h. The pore size and hydrogen storage capacity of each sample were measured by N2 and H2 gas s...

Keyword

참고문헌 (58)

  1. DOE, US 2016 The fuel cell technologies office multi-year Research, development, and demonstration plan 

  2. Elam 1996 IEA agreement on the production and utilization of hydrogen 

  3. Catal Today Satyapal 120 3-4 246 2007 10.1016/j.cattod.2006.09.022 The US department of energy's national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements 

  4. J Power Sources Ströbel 159 2 781 2006 10.1016/j.jpowsour.2006.03.047 Hydrogen storage by carbon materials 

  5. J Am Chem Soc Wang 131 20 7016 2009 10.1021/ja8083225 High hydrogen storage capacity of porous carbons prepared by using activated carbon 

  6. Int J Hydrogen Energy Xu 32 13 2504 2007 10.1016/j.ijhydene.2006.11.012 Investigation of hydrogen storage capacity of various carbon materials 

  7. Carbon Jordá-Beneyto 45 2 293 2007 10.1016/j.carbon.2006.09.022 Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures 

  8. Carbon Tian 47 8 2128 2009 10.1016/j.carbon.2009.03.063 Enhanced hydrogen storage capacity in carbon aerogels treated with KOH 

  9. Carbon Georgiev 44 13 2724 2006 10.1016/j.carbon.2006.04.023 The rotational and translational dynamics of molecular hydrogen physisorbed in activated carbon: a direct probe of microporosity and hydrogen storage performance 

  10. Catal Today Jin 120 3-4 399 2007 10.1016/j.cattod.2006.09.012 Hydrogen adsorption characteristics of activated carbon 

  11. Appl Phys A Shiraishi 78 7 947 2004 10.1007/s00339-003-2413-0 Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms 

  12. Ind Eng Chem Res Gordon 38 12 4647 1999 10.1021/ie990503h Molecular modeling of adsorptive energy storage: hydrogen storage in single-walled carbon nanotubes 

  13. Science Baughman 297 5582 787 2002 10.1126/science.1060928 Carbon nanotubes--the route toward applications 

  14. Appl Phys Lett Liu 80 13 2389 2002 10.1063/1.1466517 Volumetric hydrogen storage in single-walled carbon nanotubes 

  15. J Phys Chem B Smith 107 16 3752 2003 10.1021/jp027631v Chemical activation of single-walled carbon nanotubes for hydrogen adsorption 

  16. Appl Phys Lett Ritschel 80 16 2985 2002 10.1063/1.1469680 Hydrogen storage in different carbon nanostructures 

  17. J Mater Res Pradhan 17 9 2209 2002 10.1557/JMR.2002.0326 Large cryogenic storage of hydrogen in carbon nanotubes at low pressures 

  18. Appl Surf Sci Zhu 178 1-4 50 2001 10.1016/S0169-4332(01)00309-9 Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature 

  19. Chem Phys Lett Cao 342 5-6 510 2001 10.1016/S0009-2614(01)00619-4 Hydrogen storage of dense-aligned carbon nanotubes 

  20. J Alloy Compd Nishimiya 339 1-2 275 2002 10.1016/S0925-8388(01)02007-2 Hydrogen sorption by single-walled carbon nanotubes prepared by a torch arc method 

  21. Int J Hydrogen Energy Rather 34 2 961 2009 10.1016/j.ijhydene.2008.09.089 Hydrogen storage of nanostructured TiO2-impregnated carbon nanotubes 

  22. Int J Hydrogen Energy Chen 32 2 237 2007 10.1016/j.ijhydene.2006.03.010 Hydrogen storage by KOH-modified multi-walled carbon nanotubes 

  23. Int J Hydrogen Energy Kunowsky 33 12 3091 2008 10.1016/j.ijhydene.2008.01.036 Impact of the carbonisation temperature on the activation of carbon fibres and their application for hydrogen storage 

  24. J Power Sources Salvador 190 2 331 2009 10.1016/j.jpowsour.2009.01.024 Hydrogen storage in carbon fibers activated with supercritical CO2: models and the importance of porosity 

  25. Mater Chem Phys Zhu 78 3 670 2003 10.1016/S0254-0584(02)00233-X Hydrogen storage in heat-treated carbon nanofibers prepared by the vertical floating catalyst method 

  26. Energy Environ Sci Pumera 4 3 668 2011 10.1039/C0EE00295J Graphene-based nanomaterials for energy storage 

  27. Adv Mater Xia 27 39 5981 2015 10.1002/adma.201502005 Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene 

  28. Nanomater Energy Xia 26 488 2016 10.1016/j.nanoen.2016.06.016 Graphene-wrapped reversible reaction for advanced hydrogen storage 

  29. Adv Energy Mater Zhang 8 13 1702975 2018 10.1002/aenm.201702975 Graphene-tailored thermodynamics and kinetics to fabricate metal borohydride nanoparticles with high purity and enhanced reversibility 

  30. Diam Relat Mater Liu 82 19 2018 10.1016/j.diamond.2017.12.003 Carbon nanostructures/Mg hybrid materials for hydrogen storage 

  31. Prog Mater Sci Yu 88 1 2017 10.1016/j.pmatsci.2017.03.001 Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications 

  32. Nat Mater Jeon 10 4 286 2011 10.1038/nmat2978 Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts 

  33. J Phys Chem C Zlotea 119 32 18091 2015 10.1021/acs.jpcc.5b05754 Ultrasmall MgH2 nanoparticles embedded in an ordered microporous carbon exhibiting rapid hydrogen sorption kinetics 

  34. J Alloy Compd Bogdanović 282 1-2 84 1999 10.1016/S0925-8388(98)00829-9 Thermodynamic investigation of the magnesium-hydrogen system 

  35. J Alloy Compd Zaluska 288 1-2 217 1999 10.1016/S0925-8388(99)00073-0 Nanocrystalline magnesium for hydrogen storage 

  36. Renew Sustain Energy Rev Sadhasivam 72 523 2017 10.1016/j.rser.2017.01.107 Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: a review 

  37. Int J Hydrogen Energy Liu 43 24 11120 2018 10.1016/j.ijhydene.2018.04.202 Enhanced hydrogen storage performance of three-dimensional hierarchical porous graphene with nickel nanoparticles 

  38. Phys Chem Chem Phys Jia 15 16 5814 2013 10.1039/c3cp50515d Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH 2 

  39. J Phys Chem C Zlotea 119 32 18091 2015 10.1021/acs.jpcc.5b05754 Ultrasmall MgH2 nanoparticles embedded in an ordered microporous carbon exhibiting rapid hydrogen sorption kinetics 

  40. J Ind Eng Chem Heo 31 330 2015 10.1016/j.jiec.2015.07.006 Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity 

  41. ACS Nano Ting 9 8 8249 2015 10.1021/acsnano.5b02623 Direct evidence for solid-like hydrogen in a nanoporous carbon hydrogen storage material at supercritical temperatures 

  42. Mater Des Khalil 42 353 2012 10.1016/j.matdes.2012.06.015 Bamboo fibre reinforced biocomposites: a review 

  43. J Wood Sci Bhuiyan 46 6 431 2000 10.1007/BF00765800 Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions 

  44. J Mater Chem Genovese 3 6 2903 2015 10.1039/C4TA06110A High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob 

  45. Science Atalla 227 4687 636 1985 10.1126/science.227.4687.636 Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue 

  46. Planta Agarwal 224 5 1141 2006 10.1007/s00425-006-0295-z Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana) 

  47. Carbon Zhan 49 4 1362 2011 10.1016/j.carbon.2010.12.002 Electronic structure of graphite oxide and thermally reduced graphite oxide 

  48. Carbon González 50 3 828 2012 10.1016/j.carbon.2011.09.041 Thermally reduced graphite oxide as positive electrode in vanadium redox flow batteries 

  49. Carbon Wollbrink 106 93 2016 10.1016/j.carbon.2016.04.062 Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivity 

  50. J Anal Appl Pyrolysis Fu 98 177 2012 10.1016/j.jaap.2012.08.005 Evaluation of the porous structure development of chars from pyrolysis of rice straw: effects of pyrolysis temperature and heating rate 

  51. Nat Commun Cho 6 7145 2015 10.1038/ncomms8145 Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein 

  52. Phys Chem Chem Phys Kim 14 4 1480 2012 10.1039/C2CP23683D Thermally modulated multilayered graphene oxide for hydrogen storage 

  53. Int J Hydrogen Energy Kim 37 19 14217 2012 10.1016/j.ijhydene.2012.07.029 Investigation on the existence of optimum interlayer distance for H2 uptake using pillared-graphene oxide 

  54. Int J Hydrogen Energy Gogotsi 34 15 6314 2009 10.1016/j.ijhydene.2009.05.073 Importance of pore size in high-pressure hydrogen storage by porous carbons 

  55. J Phys Chem B Rzepka 102 52 10894 1998 10.1021/jp9829602 Physisorption of hydrogen on microporous carbon and carbon nanotubes 

  56. Proc Natl Acad Sci Unit States Am Singh 103 9 3357 2006 10.1073/pnas.0509009103 Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers 

  57. Phys Rev B Aga 76 16 165404 2007 10.1103/PhysRevB.76.165404 Theoretical investigation of the effect of graphite interlayer spacing on hydrogen absorption 

  58. Phys Rev B Cabria 78 7 2008 10.1103/PhysRevB.78.075415 Hydrogen storage capacities of nanoporous carbon calculated by density functional and Møller-Plesset methods 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로