$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing

Science, v.368 no.6491 = no.6491, 2020년, pp.660 - 665  

Khairallah, Saad A. (Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.) ,  Martin, Aiden A. (Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.) ,  Lee, Jonathan R. I. (Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.) ,  Guss, Gabe (Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.) ,  Calta, Nicholas P. (Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.) ,  Hammons, Joshua A. (Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.) ,  Nielsen, Michael H. (Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.) ,  Chaput, Kevin (Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA.) ,  Schwalbach, Edwin (Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA.) ,  Shah, Megna N. (Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA.) ,  Chapman, Michael G. (Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA.) ,  Willey, Trevor M. (Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.) ,  Rubenchik, Alexander M. (Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.) ,  Anderson, Andrew T. (Lawrence Livermore National Laboratory, Livermore, CA 94550, USA) ,  Wang, Y. Morris ,  Matthews, Manyalibo J. ,  King, Wayne E.

Abstract AI-Helper 아이콘AI-Helper

Circumventing spatterLaser powder bed fusion is an additive manufacturing technique that laser-melts powder layer by layer to build a three-dimensional (3D) part. Khairallah et al. used experiments and a multiphysics model to determine the origin of the melt spatter and defect formation that degrade...

참고문헌 (34)

  1. DebRoy, T., Mukherjee, T., Milewski, J. O., Elmer, J. W., Ribic, B., Blecher, J. J., Zhang, W.. Scientific, technological and economic issues in metal printing and their solutions. Nature materials, vol.18, no.10, 1026-1032.

  2. T. Wohlers 3D Printing and Additive Manufacturing State of the Industry (Wholers Associates 2018). 

  3. Bidare, P., Bitharas, I., Ward, R.M., Attallah, M.M., Moore, A.J.. Fluid and particle dynamics in laser powder bed fusion. Acta materialia, vol.142, 107-120.

  4. Matthews, Manyalibo J., Guss, Gabe, Khairallah, Saad A., Rubenchik, Alexander M., Depond, Philip J., King, Wayne E.. Denudation of metal powder layers in laser powder bed fusion processes. Acta materialia, vol.114, 33-42.

  5. Ly, Sonny, Rubenchik, Alexander M., Khairallah, Saad A., Guss, Gabe, Matthews, Manyalibo J.. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Scientific reports, vol.7, 4085-.

  6. Zhao, Cang, Fezzaa, Kamel, Cunningham, Ross W., Wen, Haidan, De Carlo, Francesco, Chen, Lianyi, Rollett, Anthony D., Sun, Tao. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Scientific reports, vol.7, 3602-.

  7. Leung, Chu Lun Alex, Marussi, Sebastian, Atwood, Robert C., Towrie, Michael, Withers, Philip J., Lee, Peter D.. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nature communications, vol.9, no.1, 1355-.

  8. Guo, Qilin, Zhao, Cang, Escano, Luis I., Young, Zachary, Xiong, Lianghua, Fezzaa, Kamel, Everhart, Wes, Brown, Ben, Sun, Tao, Chen, Lianyi. Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging. Acta materialia, vol.151, 169-180.

  9. Voisin, Thomas, Calta, Nicholas P., Khairallah, Saad A., Forien, Jean-Baptiste, Balogh, Levente, Cunningham, Ross W., Rollett, Anthony D., Wang, Y. Morris. Defects-dictated tensile properties of selective laser melted Ti-6Al-4V. Materials & Design, vol.158, 113-126.

  10. Cunningham, Ross, Zhao, Cang, Parab, Niranjan, Kantzos, Christopher, Pauza, Joseph, Fezzaa, Kamel, Sun, Tao, Rollett, Anthony D.. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science, vol.363, no.6429, 849-852.

  11. Martin, Aiden A., Calta, Nicholas P., Khairallah, Saad A., Wang, Jenny, Depond, Phillip J., Fong, Anthony Y., Thampy, Vivek, Guss, Gabe M., Kiss, Andrew M., Stone, Kevin H., Tassone, Christopher J., Nelson Weker, Johanna, Toney, Michael F., van Buuren, Tony, Matthews, Manyalibo J.. Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nature communications, vol.10, no.1, 1987-.

  12. Lawrence Livermore National Laboratory ALE3D for industry (2018); https://ale3d4i.llnl.gov. 

  13. Khairallah, S.A., Anderson, A.. Mesoscopic simulation model of selective laser melting of stainless steel powder. Journal of materials processing technology, vol.214, no.11, 2627-2636.

  14. Khairallah, S.A., Anderson, A.T., Rubenchik, A., King, W.E.. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta materialia, vol.108, 36-45.

  15. Ye, Jianchao, Khairallah, Saad A., Rubenchik, Alexander M., Crumb, Michael F., Guss, Gabe, Belak, Jim, Matthews, Manyalibo J.. Energy Coupling Mechanisms and Scaling Behavior Associated with Laser Powder Bed Fusion Additive Manufacturing. Advanced engineering materials, vol.21, no.7, 1900185-.

  16. Trapp, Johannes, Rubenchik, Alexander M., Guss, Gabe, Matthews, Manyalibo J.. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Applied materials today, vol.9, 341-349.

  17. Panwisawas, C., Qiu, C., Anderson, M.J., Sovani, Y., Turner, R.P., Attallah, M.M., Brooks, J.W., Basoalto, H.C.. Mesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolution. Computational materials science, vol.126, 479-490.

  18. Kamath, Chandrika, El-dasher, Bassem, Gallegos, Gilbert F., King, Wayne E., Sisto, Aaron. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. International journal of advanced manufacturing technology, vol.74, no.1, 65-78.

  19. Heeling, Thorsten, Wegener, Konrad. The effect of multi-beam strategies on selective laser melting of stainless steel 316L. Additive manufacturing, vol.22, 334-342.

  20. Abe, F., Osakada, K., Shiomi, M., Uematsu, K., Matsumoto, M.. The manufacturing of hard tools from metallic powders by selective laser melting. Journal of materials processing technology, vol.111, no.1, 210-213.

  21. Mancisidor, A.M., Garciandia, F., Sebastian, M.S., Alvarez, P., Diaz, J., Unanue, I.. Reduction of the Residual Porosity in Parts Manufactured by Selective Laser Melting Using Skywriting and High Focus Offset Strategies. Physics procedia, vol.83, 864-873.

  22. Eggers, Jens. Nonlinear dynamics and breakup of free-surface flows. Reviews of modern physics, vol.69, no.3, 865-930.

  23. Groeber, M A, Schwalbach, E, Donegan, S, Chaput, K, Butler, T, Miller, J. Application of characterization, modelling, and analytics towards understanding process-structure linkages in metallic 3D printing. IOP conference series. Materials science and engineering, vol.219, 012002-.

  24. Nickel, A.H., Barnett, D.M., Prinz, F.B.. Thermal stresses and deposition patterns in layered manufacturing. Materials science & engineering. properties, microstructure and processing. A, Structural materials, vol.317, no.1, 59-64.

  25. K. Schwab The fourth industrial revolution: What it means how to respond (2018); www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond. 

  26. Kaiser, Thomas B.. Laser ray tracing and power deposition on an unstructured three-dimensional grid. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, vol.61, no.1, 895-905.

  27. P. Shcheglov thesis National Research Nuclear University Moscow Russia (2012). 

  28. Kouraytem, Nadia, Li, Xuxiao, Cunningham, Ross, Zhao, Cang, Parab, Niranjan, Sun, Tao, Rollett, Anthony D., Spear, Ashley D., Tan, Wenda. Effect of Laser-Matter Interaction on Molten Pool Flow and Keyhole Dynamics. Physical review applied, vol.11, no.6, 064054-.

  29. 10.1533/9781845690144 K. C. Mills Recommended Values of Thermo-physical Properties for Selected Commercial Alloys (Woodhead Publishing Cambridge 2002). 

  30. Mukherjee, T., Wei, H.L., De, A., DebRoy, T.. Heat and fluid flow in additive manufacturing – Part II: Powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys. Computational materials science, vol.150, 369-380.

  31. Martin, Aiden A., Calta, Nicholas P., Hammons, Joshua A., Khairallah, Saad A., Nielsen, Michael H., Shuttlesworth, Richard M., Sinclair, Nicholas, Matthews, Manyalibo J., Jeffries, Jason R., Willey, Trevor M., Lee, Jonathan R.I.. Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ X-ray imaging. Materials today advances, vol.1, 100002-.

  32. Schindelin, Johannes, Arganda-Carreras, Ignacio, Frise, Erwin, Kaynig, Verena, Longair, Mark, Pietzsch, Tobias, Preibisch, Stephan, Rueden, Curtis, Saalfeld, Stephan, Schmid, Benjamin, Tinevez, Jean-Yves, White, Daniel James, Hartenstein, Volker, Eliceiri, Kevin, Tomancak, Pavel, Cardona, Albert. Fiji: an open-source platform for biological-image analysis. Nature methods, vol.9, no.7, 676-682.

  33. Lowe, David G.. Distinctive Image Features from Scale-Invariant Keypoints. International journal of computer vision, vol.60, no.2, 91-110.

  34. Groeber, Michael A, Jackson, Michael A. DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D. Integrating materials and manufacturing innovation, vol.3, no.1, 56-72.

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로