$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

본 논문에서는 연관규칙 탐사에서 발견된 대량의 패턴 중에서 의미있는 패턴을 효과적으로 추출하기 위한 텍스트마이닝 기법을 제시하였다. Agrawal 등이 제안한 R-interesting 값을 수용하여 의미있는 패턴을 추출하기 위한 방법이다 대량의 연관규칙중에서 특정 분야에서 추출된 패턴의 빈도수와 다른 분야의 빈도수의 비율에 따른 $\chi$$^2$값의 A셀에 대한 기여도와 R 값을 비교한 결과 빈도수가 같더라도 다른 분야에 나타나는 비율이 높을수록 기여도와 R 값은 낮게 나타났다. 또한 특정 분야에만 나타나는 패턴에 대해서 빈도수에 따른 기여도와 R 값은 빈도수가 높을수록 기여도는 높아지고 R 값은 변화가 없었다. 이 결과를 이용하여 R 값이 같은 경우 빈도수가 높은 순으로 의미있는 패턴을 추출할 수 있었다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일