$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

작은 데이터에 대한 베이지안망 분류기(BNC)의 베이지안 모델 평균화(BMA) 성능 평가

Evaluation of Bayesian Model Averaging (BMA) of Bayesian Network Classifiers (BNCs) on Small Datasets

초록

작은 데이터에서 베이지안망 분류기(Bayesian network classifier, BNC)를 학습할 때, 과대적합(overfitting)으로 인한 일반화 성능의 저하가 초래된다 이런 경우, 베이지안 모델 평균화(Bayesian model averaging, BMA)는 모델 자체에 대한 불확실성을 분석 과정에서 고려함으로써, 성능 저하를 피할 수 있는 수단을 제공한다. 본 논문에서는 BNC의 BMA의 작은 데이터에 대한 성능을 평가 및 분석한다. 특히, 노드의 순서에 대한 평균화의 효과가 연구된다. 인공데이터에 대한 실험 결과, 노드의 순서가 BNC의 BMA의 분류 성능에 미치는 영향은 지대하며, 이는 데이터의 크기가 극히 작은 경우의 성능 저하에 직접적인 원인이 된다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일