$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 인공신경망 및 랜덤포레스트 기법을 활용한 기업 분식회계 탐지 성능 평가 연구
A Study on Accounting Fraud Detection using Neural Network and Random Forest 원문보기

한국정보처리학회 2023년도 춘계학술발표대회, 2023 May 18, 2023년, pp.692 - 693  

황동혁 (영남대학교 컴퓨터공학과) ,  서영석 (영남대학교 컴퓨터공학과)

초록
AI-Helper 아이콘AI-Helper

ESG 경영이 중요해짐에 따라 기업의 분식 여부도 중요해졌다. 따라서 본 논문에서는 인공신경망과 랜덤포레스트를 활용하여 기업의 분식회계 여부를 판단 성능을 비교분석하고 그 유용성에 대해 평가하였다. 실제 기업 회계정보를 수집하여 실험을 수행하였고, 실험 결과 F1-Score 기준 랜덤포레스트의 RFECV 기법이 0.81로 분식 기업을, SMOTE 기법을 사용한 모델이 정상 기업을 탐지하였고 Accuracy 기준 랜덤포레스트의 RFECV 기법과 SMOTE 기법을 사용한 모델이 0.77로 가장 효과적인 탐지 성능을 보여주었다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로