$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수출 화훼류의 전자빔 검역기술 및 처리시스템 개발
Development of Quarantine Technique and Treatment System on Export Floricultural Crop Using an Electron Beam Irradiation 원문보기

보고서 정보
주관연구기관 두레마을친환경농업연구원
보고서유형최종보고서
발행국가대한민국
언어 한국어
발행년월2012-04
과제시작연도 2011
주관부처 농림축산식품부
Ministry of Agriculture, Food and Rural Affairs(MAFRA)
등록번호 TRKO201400026480
과제고유번호 1545002623
사업명 수출전략기술개발
DB 구축일자 2014-11-10
DOI https://doi.org/10.23000/TRKO201400026480

초록

○ 연구결과
1. 과제 1 : 수출 농산물에 대한 비화학적 소독기술 적용에 따른 수출경쟁력 확보
가. 수출입식물 소독기술에 대한 현행 기술평가
현행 수출입식물 소독기술의 평가는 델파이기법(Delphi Method)을 이용하여 평가하였다.
평가 결과는 <표 1>과 같은데 이는 2가지로 요약할 수 있다.
첫째, 화학적 소독기술은 선진국대비 격차가 1년 이내이나 현재 쇠퇴기에 들어선 기술이므로 향후 대체기술의 개발이 시급하다.
둘째, 물리적 소독기술은 최선진국 대비 현행 60-65% 수준으로 약 3-3.5

Abstract

IV. Results
1. Sub-project 1 : Secure of export competitiveness for agricultural products export using a electron beam irradiation as the non-chemical quarantine technique
A. Evaluation of current technology for sterilizing imported and exported plants
The Delphi method was applied to evalu

shows the result of evaluation described in the following.
a) Since the temporal gap with advanced countries is not more than one year but is currently at the stage of decline with respect to chemical sterilization technology, it is highly necessary to develop alternative technology to be used in the future.
b) Physical sterilization technology is currently at the level of 60-65% as compared to the most advanced countries, and the temporal gap with them is approximately 3-3.5 years. It is expected the technology will develop to be at the level of 80-85% and has a gap of 1.5-2 years in five years.
The reason of the technology gap between Korea and the most advanced countries is investigated as follows.
a) There is a need of ensuring a sufficient number of staffs for research involved in plant sterilization.
b) It is hard to ensure budgets because of little interest from the society and policy.
c) The National Plant Quarantine Service is the only specialized institution for plant sterilization.
d) Radiation technology should be underpinned by means of consumers’ awareness, enough data and regulations rather than advanced technology.
e) It is necessary to disseminate big processing facilities.
f) Empirical studies for commercializing the radiation technology are required.
g) More field application test of developed technology is required.
The investigation revealed the reason of technology difference between Korea and the most advanced countries and perspective in five years, described below.
a) There is a little market demand for MB alternatives to result in difficulty in encouraging investment and research cooperation with major companies.
b) It seems addressed if national budgets are ensured.
c) It is necessary to quickly introduce technology not developed in Korea from advanced countries.
d) Time is needed for building up infrastructure.
e) It is expected that advanced countries will accelerate new technology development and application.
B. Investigation of demand for imported and exported plant sterilization technology
The Delphi method was used to investigate demand for imported and exported plant sterilization technology and the following is the result of investigation.
The investigation revealed that, among imported and exported plant sterilization technologies, the sterilization technology that should be studied, developed, introduced and disseminated is the technology alternative to CH3Br, electron beam (radiation) technology, fresh vegetable sterilization technology and CATTS (Controlled Atmosphere Temperature Treatment System).
Investigation revealed exemplary sterilization technologies which need concentrated investment including wood fumigant development technology, electron beam (radiation) processing technology, low energy unit sterilization, wide scalability sterilization technology and CATTS.
C. Survey of consumer and producer awareness of non-chemical sterilization for exported flowers Survey was made through face-to-face interview with questionnaires about consumer awareness of non-chemical sterilization for exported flowers.
Consumer awareness survey targeted flower consumers, importers, wholesalers and retailers of Japan who import the most flowers from Korea, and employees involved in flower sterilization in Korea.
The survey revealed the following result.
a) 93% of respondents did not know the electron beam sterilization technology with respect to the awareness of electron beam sterilization technology.
b) 81% of respondents said they did not know the safety of electron beam sterilization.
c) 70% of respondents said they would not purchase agri-products for food sterilized with electron beams.
d) 60% of respondents said they would purchase non-food agri-products sterilized with electron beams.
D. Survey of producer awareness of non-chemical sterilization for exported flowers
Survey was made through face-to-face interview with questionnaires about producer awareness of non-chemical sterilization for exported flowers as for the consumer survey.
The survey of producer awareness targeted flower farmers in Korea. The survey revealed the following result.
a) 73% of respondents did not know the electron beam sterilization technology with respect to the awareness of electron beam sterilization technology.
b) 90% of respondents said they would not purchase agri-products for food sterilized with electron beams.
c) 33% of respondents said they would absolutely do flower sterilization with electron beams, and 62% said they would try it.
E. Diagnosis of potential of commercializing electron beam sterilization technology for exported flowers
Analysis revealed the following issues involved in commercializing the electron beam sterilization system for exported flowers.
a) Technology issues for using electron beam generators.
b) Economic issues in technology development.
c) Consumer’s negative opinion on electron beam generators.
d) Support by institutions for commercializing the electron beam generators.
The direction for promoting commercialization of the electron beam sterilization system for exported flowers is suggested as follows.
a) It is necessary to continue to develop and systematize processing methods and process for items not studied under the circumstance of Korea in order to overcome technology issues for using the ‘electron beam generators’.
b) Because economical efficiency highly depends on the volume of radiation by a ‘electron beam generator’, it is necessary to ensure optimum radiation for the highest economical efficiency through studies on economical efficiency, for addressing economic issues for technology development.
c) Since the advantage that the electron beam generators exhibit great treatment capability per unit time is a disadvantage that the facility cannot be operated if there is no item to be treated, it is desirable to install the facility in big collection sites (on a province, or port city basis) rather than installation in a single site in order to ensure the amount of products to be treated. The electron beam generators require a lot of initial installation cost and space for storing treated products.
d) The institution should be improved for commercializing the ‘electron beam generators’. While the electron beam accelerators are registered as ordinary industrial equipment but not as farming equipment, they are not supported under the APC (Agricultural product Processing Center) Equipment Quality Assurance Framework. Therefore, required is positive support and interest of the government and municipalities.
e) Enhance the potential for commercializing electron beams through PR for the public in order to convert consumer’s negative opinion to positive opinion for the items treated with the ‘electron beam generators’.
F. Analysis of economical efficiency for electron beam sterilization for exported flowers
Analysis of economical efficiency for electron beam sterilization for exported flowers revealed the following result.
The benefit of the developed ‘electron beam quarantine technology and treatment system’ was defined as and measured with respect to flower sensitivity, sensitivity to microbes, sensitivity to harmful insects and reduced cost involved in distribution. The cost of the developed ‘electron beam quarantine technology and treatment system’ was defined as and measured with respect to the cost for purchasing or royalty for ‘electron beam quarantine technology and treatment systems’, installation cost, maintenance cost and other expenses.
Target flowers for analysis of economical efficiency were chrysanthemums (Baekma 1) and roses (Revue, Ilsebronze, Red Giant).
Economical efficiency was analyzed for the scheme 1 of purchasing and using electron beam accelerators, and the scheme 2 of paying royalty for using the electron beam accelerators. The method of electron beam treatment was differentiated as 1) Energy of 2.5MeV and 10MeV, 2) Radiation of 100Gy, 200Gy, 400Gy, 600Gy, 800Gy and 1,000Gy for experiment, respectively.
a) Analysis of economical efficiency for electron beam sterilization for chrysanthemums revealed feasibility in the treatment of radiation with 200Gy and 400Gy at energy 2.5MeV, and with 100Gy, 200Gy and 400Gy at energy 10MeV in the scheme 1, respectively. The analysis for scheme 2 also revealed feasibility in the treatment of radiation with 200Gy and 400Gy at energy 2.5MeV, and with 100Gy, 200Gy and 400Gy at energy 10MeV, respectively, the same as in scheme 1.
b) Analysis of economical efficiency for electron beam sterilization for roses revealed feasibility in the treatment of radiation with 100Gy and 200Gy at energy 2.5MeV, and with 200Gy, 400Gy and 600Gy at energy 10MeV in the scheme 1, respectively.
The analysis for scheme 2 also revealed feasibility in the treatment of radiation with 100Gy and 200Gy at energy 2.5MeV the same as in scheme 1, and only with 200Gy and 400Gy at energy 10MeV, respectively, unlike scheme 1.
2. Sub-project 2 : Development of non-chemical pest control and quarantine technique using an electron beam irradiation
The effects of electron beam irradiation on each developmental stage in Tetranychus urticae, Bemisia tabaci, Plutella xylostella, Myzus persicae, Liriomyza trifolii, Spodoptera litura, and Frankliniella occidentalis,
were examined. Eggs, larvae, puparia, and adults were irradiated with increasing doses of electron beam irradiation (seven levels between 30 and 250 Gy). Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radio tolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in Plutella xylostella, L. trifolii, and Spodoptera litura were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h. These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage.
3. Sub-project 3 : Non-chemical Disinfection Technology Developed Fundamental Technology and Processing Systems
In order to find disinfection technology for high-quality export flower plants, disinfection tests were carried out by applying electron beam to commercial export flower plants. The disinfection condition was set up by evaluating a beam current, beam output and beam uniformity for irradiation treatment with electron beam, and by estimating physiological characteristic, microbiology, physico-chemical and a sensual quality.
a) Setting up beam current, beam output and beam uniformity.
b) Dose distribution chart characteristic understanding of electron beam along irradiation patterns.
c) Development of electron beam treatment process for export flower plants and optimizing disinfection conditions.
d) Establishing manuals for a quality management and guarantee of export flower plants.
i) In order to estimate eligibility for facility, mid energy and high energy electron beam accelerator was frequently measured and managed a dose distribution chart and dose classify by packages of export flower plants was measured. The absorbed dose irradiated to export flower plants were dealed with ranges of low dose and changed sensitively for variation of package materials or quantity of export flower plants filled.
ii) In case of export flower plants, a available penetration depth was confirmed to penetrate sample material fully that was irradiated by condition 2.5MeV and 160mm depth, and electron beam standard deviation by types was measured 0.01~0.07. And irradiated by condition 10MeV and 580mm depth, and electron beam standard deviation by types was measured 0.01~0.02.
iii) The verification result of a dose distribution chart classify by sort of export flower plants packages was found out agreements of theoretical relation for depth and dose of electron beam and operation conditions for electron beam irradiation facilities were determined by density and thickness of irradiating materials.
iv) The temperature effect by irradiating electron beam was not different with before and after of irradiating by carried out 0.1~10kGy range of absorbed dose.
v) Set up the quality management and guarantee of export flower plants for using electron beam irradiation service facilities and established progress application manuals.
4. Sub-project 4 : Development of disinfection and quarantine technique on export floricultural crop using an electron beam irradiation
The sensitivity of cut flowers to electron beam irradiation varied from species to species and to a lesser extent variety to variety. ‘M-second Love’, ‘Vivian’, ‘Il se Bronze’, ‘Queen Bee’, ‘Red Giant’, ‘Jana’, and ‘Red Giant’ roses showed high sensitivity to electron beam irradiation. ‘Decoration’, ‘Lydia’, and ‘Lovely Lydia’ roses were less affected and showed medium sensitivity, while ‘Revue’ rose had low sensitivity to electron beam irradiation. ‘Baekma’ chrysanthemum was more affected than ‘Delmonte’ chrysanthemum spray and showed medium sensitivity. Lily ‘Siberia’ and ‘Augusta’ had medium sensitivity. Carnation ’Montezuma’ and lisianthus ‘Rosina White’ was maintained upto 600 Gy and showed low sensitivity. Stock ‘Glory Lavender’ showed high sensitivity to electron beam.
Electron beam affected the ultrastructure of petal cells in rose and lily. As the irradiation dose increased, the flower senescence progressed.
Botrytis cinerea is a serious pathogen of roses and other cut flower crops. Electron beam inhibited spore germination of Botrytis cinerea with increasing irradiation doses. The effective irradiation dose for 50% inhibition of mycelial growth was 981 Gy for 2.5 MeV and 819 Gy for 10 MeV electron beam. Electron beam was more effective in reducing mycelial growth of Botrytis cinerea at 10oC than at 20oC.
Guideline for electron beam disinfection involves:
a) Test organism: Botrytis cinerea
b) Test crops: Rose, Chrysanthemum, Lily, Carnation, Lisianthus, Stock
c) Test standards:
●Dose setting methods for radiation sterilization: ISO 11137-2
●Bioburden test: ISO 11737-1
●Sterility test: ISO 11737-2
d) Pathogen testing methods:
●Pathogen isolation
●Spore germination test
●Mycelial growth test
●Screening for in vivo antifungal activity
e) Schedule for electron beam irradiation
5. Sub-project 5 : Production of export floricultural crop and collection of information about flower farmers, marketing and consumers
In this sub-project, the Rosepia Ltd. Co. were provided flowers for these projects to each research team, and collecting information about flower production, marketing, farmers, dealers, and consumers

목차 Contents

  • 표지 ... 1
  • 제출문 ... 2
  • 기관별 연구 참여자 ... 3
  • 요 약 문 ... 4
  • SUMMARY ... 13
  • CONTENTS ... 22
  • 목 차 ... 23
  • 표 목 차 ... 27
  • 그 림 목 차 ... 33
  • 제1장 연구개발과제의 개요 ... 37
  • 제1절 연구개발의 필요성 ... 37
  • 1. 메칠브로마이드(MB) 대체 소독기술의 개발 필요성 대두 ... 37
  • 2. 훈증약제를 대체할 물리적 소독기술 개발 요구 ... 37
  • 3. 전자빔을 이용한 소독기술 도입의 세계적인 추세 ... 38
  • 4. 화훼 수출 검역시 병해충 발견 증가에 따른 개발 필요성 대두 ... 39
  • 5. 농업분야에서 전자빔기술을 응용한 연구개발 요구 ... 40
  • 제2절 연구개발 목표 및 내용 ... 41
  • 1. 연구개발의 최종목표 및 주요내용 ... 41
  • 2. 과제별(세부․협동) 연구개발의 목표 및 내용 ... 41
  • 2.1 연구개발 주체 및 연구목표 및 내용 ... 41
  • 2.2 연차별 연구개발의 목표 및 내용 ... 43
  • 3. 연구개발의 추진전략ㆍ방법 및 추진체계 ... 46
  • 3.1 추진전략 및 방법 ... 46
  • 제2장 국내외 선행연구 고찰 ... 52
  • 제1절 본 과제의 기술과 관련된 국내 선행연구 ... 52
  • 1. 화훼류의 전자빔 처리에 따른 품질 평가 ... 52
  • 1.1 재료 및 방법 ... 52
  • 1.2 결과 및 고찰 ... 52
  • 2 전자빔 처리에 따른 Botrytis cinerea 의 생장저해 효과 평가 ... 53
  • 2.1 재료 및 방법 ... 53
  • 2.2 결과 및 고찰 ... 54
  • 제2절 전자빔과 관련된 선행연구 ... 55
  • 1. 전자빔과 미생물 및 해충과 관련된 연구 ... 55
  • 2. 전자빔을 이용한 소독기술관련 연구 ... 55
  • 3. 농업분야의 전자빔 기술 개발․이용 관련 연구 ... 56
  • 3.1 전자빔 기술 이용 관련 연구 ... 56
  • 3.2 전자빔가속기 기술 개발․이용 관련 연구 ... 56
  • 4. 전자빔 기술의 경제성 분석 ... 58
  • 제3장 연구개발과제의 개요 ... 59
  • 제1절 수출 농산물에 대한 비화학적 소독기술 적용에 따른 수출 경쟁력 확보 ... 59
  • 1. 연구개발과제의 개요 ... 59
  • 1.1 연구개발의 목적 및 필요성 ... 59
  • 1.2 연구 목표 및 연구내용 ... 59
  • 1.3 연구방법 ... 61
  • 2. 수출입 식물 소독기술에 대한 현행 기술평가 및 수요조사 ... 62
  • 2.1 현행 소독기술에 대한 기술평가 및 수요조사 방법 ... 62
  • 2.2 현행 소독기술에 대한 기술평가 및 수요 추정 개요 ... 64
  • 2.3 식물 소독기술의 평가 및 국제비교 ... 67
  • 2.4 금후의 식물 소독기술의 수요와 발전 전망 ... 74
  • 2.5 기타 식물 소독기술 관련 제언 ... 75
  • 3. 수출 화훼류에 대한 비화학적 소독기술의 소비자 및 생산자 인식조사 ... 75
  • 3.1 조사목적 ... 75
  • 3.2 비화학적 소독기술에 대한 소비자 인식조사 ... 76
  • 3.3 비화학적 소독기술에 대한 생산자 인식조사 ... 87
  • 3.4 한국의 수출 화훼류 생산실태 및 수익성 조사 ... 94
  • 4. 수출 화훼류에 대한 전자빔 소독기술의 경제성 분석 ... 104
  • 4.1 수출 화훼류 전자빔 소독기술의 편익과 비용의 계측방법 ... 104
  • 4.2 전자빔 검역기술의 경제성 분석방법 ... 107
  • 4.3 전자빔 소독기술의 편익과 비용의 개념정립 ... 108
  • 4.4 전자빔조사 관련 편익 ... 109
  • 4.5 전자빔조사 관련 편익의 계측결과 ... 115
  • 4.6 전자빔조사 관련 비용 계측결과 ... 130
  • 4.7 전자빔조사에 의한 수확 후 농산물의 경제성 계측 ... 134
  • 5. 수출 화훼류에 대한 전자빔 소독기술의 실용화 가능성 진단 및 분석 ... 137
  • 5.1 수출 화훼류에 대한 전자빔 소독기술의 실용화 가능성 진단 ... 137
  • 5.2 ‘전자빔 소독기술’의 실용화 문제점과 개선방안 분석 ... 141
  • 제2절 전자빔을 이용한 비화학적 살충기술과 검역기술 개발 ... 142
  • 1. 연구개발과제의 개요 ... 142
  • 1.1 연구개발의 목적 ... 142
  • 1.2 연구개발의 필요성 ... 142
  • 1.3 연구개발의 범위 ... 143
  • 2. 국내외 기술개발 현황 ... 143
  • 3. 연구개발 수행 내용 및 결과 ... 144
  • 3.1 연구목표 및 연구내용 ... 144
  • 3.2 접근방법 및 연구내용 ... 144
  • 3.3 실험방법 및 연구결과 ... 145
  • 제3절 비화학적 소독기술 관련 원천기술 확보 및 처리시스템의 개발 ... 174
  • 1. 비화학적 소독기술 ... 174
  • 1.1 전자빔 소독 ... 174
  • 1.2 전자가속기 및 처리시스템 ... 177
  • 1.3 선량측정 시스템 ... 182
  • 2. 선량측정 ... 187
  • 2.1 전자빔 조사설비 ... 187
  • 2.2 화훼의 선량분포도 ... 189
  • 3. 포장소재의 적합성평가 ... 197
  • 4. 전자빔 조사공정 절차 ... 201
  • 4.1 전자빔 조사공정의 안전성 ... 201
  • 4.2 전자빔의 조사 절차 ... 201
  • 4.3 전자빔 조사에 따른 모니터링과 일상관리 ... 206
  • 5. 전자빔 조사공정의 매뉴얼 ... 208
  • 5.1 조사시설 및 기기 기준 작성 ... 208
  • 5.2 조사기록 및 표준 문서화 기록 ... 209
  • 5.3 조사인증서 발급 및 관리 ... 212
  • 6. 결 론 ... 213
  • 제4절 전자빔을 이용한 수출 화훼류의 살균기술 및 검역기술의 개발 ... 214
  • 1. 수출 화훼류의 전자빔 처리후 품질특성 평가 ... 214
  • 1.1 전자빔에 대한 수출 화훼류의 감수성 평가 ... 214
  • 1.2 전자빔에 대한 수출 화훼류의 세포구조학적 평가 ... 239
  • 1.3 보존용액 처리를 통한 수출 화훼류의 전자빔 처리후 회복율 평가 ... 243
  • 2. 수출 화훼류의 전자빔 살균기술 개발 ... 246
  • 2.1 전자빔에 대한 검역대상 병균의 감수성 평가 ... 246
  • 2.2 전자빔 조사선량 검증 ... 254
  • 2.3 전자빔 멸균 공정 매뉴얼 제작 ... 260
  • 3. 수출 화훼류의 전자빔 살균시스템 구축 ... 261
  • 3.1 수출 화훼류의 일본 현지에서의 식물검역 및 유통 현황 ... 261
  • 3.2 전자빔 살균에 대한 가이드라인 제시 ... 274
  • 제5절 수출 화훼류의 생산과 화훼농가 정보수집 ... 277
  • 제4장 목표달성도 및 관련분야에의 기여도 ... 278
  • 제1절 연구개발의 목표달성도 ... 278
  • 1. 제1차년도 연구개발의 목표달성도 ... 278
  • 2. 제2차년도 연구개발의 목표달성도 ... 279
  • 3. 제3차년도 연구개발의 목표달성도 ... 280
  • 제2절 관련분야에의 기여도 ... 281
  • 1. 경제적 측면 ... 281
  • 2. 학술적 측면 ... 281
  • 제5장 연구개발 성과 및 성과활용계획 ... 282
  • 제1절 연구개발결과의 활용방안 및 기대성과 ... 282
  • 제2절 연구개발결과의 성과 및 활용목표 ... 282
  • 1. 연구성과 목표 ... 282
  • 2. 연구성과 활용 목표 ... 282
  • 3. 특허 성과 ... 283
  • 4. 논문 게재성과 ... 284
  • 5. 국내 및 국제학술회의 발표 ... 285
  • 제6장 연구개발과정에서 수집한 해외과학기술 정보 ... 286
  • 제1절 머리말 ... 286
  • 제2절 방사선 소독기술 동향 ... 286
  • 1. 과거 동향 ... 286
  • 2. 지역 및 국제기준 ... 287
  • 3. 최근 연구 동향 ... 289
  • 3.1 일반적 동향 ... 289
  • 3.2 전자빔을 이용한 비화학적 살충기술 개발의 동향 ... 290
  • 4. 향후 동향 ... 291
  • 제3절 맺음말 ... 291
  • 제7장 참고문헌 ... 293
  • 부 표 ... 299
  • 부 록 ... 310
  • <부록 1> 수출 화훼류 생산농가 생산비 조사표 ... 310
  • <부록 2> 수출 화훼류 생산농가의 수출 검역실태 조사표 ... 316
  • <부록 3> 수출입 식물 소독기술에 대한 Delphi 조사표 ... 320
  • <부록 4> 수출 화훼류 비화학적 소독기술에 대한 수출입회사 및 소비자 인식 조사표 ... 328
  • 끝페이지 ... 335

연구자의 다른 보고서 :

참고문헌 (25)

과제요약정보
과제명(ProjectTitle) : -
연구책임자(Manager) : -
과제기간(DetailSeriesProject) : -
총연구비 (DetailSeriesProject) : -
키워드(keyword) : -
과제수행기간(LeadAgency) : -
연구목표(Goal) : -
연구내용(Abstract) : -
기대효과(Effect) : -
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로