최근 사용이 증대되고 있는 말뚝지지 전면기초(piled raft foundation) 개념의 기초 설계에서는 지지력을 증대시키기 위한 목적 보다는 주로 침하를 감소시킬 목적으로 말뚝이 사용된다. 콘크리트궤도가 연약한 지반에 설치되는 경우에는 일반적으로 지지력 측면에서의 문제는 없으나, 과도한 침하가 발생할 수 있다. 이 경우 소수의 소구경 말뚝을 궤도하부에 적절히 배치하여 설치하면 침하를 효과적으로 감소시킬 수 있을 것으로 예측된다. 본 논문에서는 말뚝 설치로 인한 콘크리트궤도의 침하감소 효과를 수치해석을 통해 평가하였다. 3차원 유한차분해석법을 이용하여 말뚝이 설치된 콘크리트궤도를 모델링 하였으며, 지반 강성과 말뚝 배치의 변화에 따른 침하량 감소 효과의 차이를 분석하였다. 해석 결과로 부터 말뚝설치를 통해 콘크리트궤도의 침하를 효과적으로 감소시킬 수 있는 것을 확인하였으며, 경제적인 설계를 위한 지반조건에 따른 합리적인 말뚝 열수와 간격을 제시하였다. 또한, 지반 조건과 말뚝 배치의 변화에 따른 말뚝의 하중분담 특성을 분석함으로써, 콘크리트궤도 하부에 설치된 말뚝의 지지 메커니즘을 파악하였다.
최근 사용이 증대되고 있는 말뚝지지 전면기초(piled raft foundation) 개념의 기초 설계에서는 지지력을 증대시키기 위한 목적 보다는 주로 침하를 감소시킬 목적으로 말뚝이 사용된다. 콘크리트궤도가 연약한 지반에 설치되는 경우에는 일반적으로 지지력 측면에서의 문제는 없으나, 과도한 침하가 발생할 수 있다. 이 경우 소수의 소구경 말뚝을 궤도하부에 적절히 배치하여 설치하면 침하를 효과적으로 감소시킬 수 있을 것으로 예측된다. 본 논문에서는 말뚝 설치로 인한 콘크리트궤도의 침하감소 효과를 수치해석을 통해 평가하였다. 3차원 유한차분해석법을 이용하여 말뚝이 설치된 콘크리트궤도를 모델링 하였으며, 지반 강성과 말뚝 배치의 변화에 따른 침하량 감소 효과의 차이를 분석하였다. 해석 결과로 부터 말뚝설치를 통해 콘크리트궤도의 침하를 효과적으로 감소시킬 수 있는 것을 확인하였으며, 경제적인 설계를 위한 지반조건에 따른 합리적인 말뚝 열수와 간격을 제시하였다. 또한, 지반 조건과 말뚝 배치의 변화에 따른 말뚝의 하중분담 특성을 분석함으로써, 콘크리트궤도 하부에 설치된 말뚝의 지지 메커니즘을 파악하였다.
Recently, foundation designs based on piled raft concept have been increasing, where the piles are required not to ensure the overall stability of the foundation but to act as settlement reducer. When a concrete track is constructed on soft ground, excessive settlements may occur, while it rarely ha...
Recently, foundation designs based on piled raft concept have been increasing, where the piles are required not to ensure the overall stability of the foundation but to act as settlement reducer. When a concrete track is constructed on soft ground, excessive settlements may occur, while it rarely has bearing capacity problems. In this case, the settlement of the concrete track may be effectively reduced by arranging a small number of small-diameter piles beneath the track. This paper presents the effect of pile installation on the reduction of concrete track's settlement. A 3D finite difference method was employed to model the piled concrete tracks. A parametric study was carried out to assess the effect of varying soil condition and pile arrangements. From the analysis results, it is verified that the effect of the pile installation is significant to effectively reduce the settlement of concrete track. Optimal number of pile rows and pile spacings was proposed for the economical design of a piled concrete track. The bearing mechanism of piles was also investigated by analyzing load sharing characteristics of pile according to soil conditions and pile arrangements.
Recently, foundation designs based on piled raft concept have been increasing, where the piles are required not to ensure the overall stability of the foundation but to act as settlement reducer. When a concrete track is constructed on soft ground, excessive settlements may occur, while it rarely has bearing capacity problems. In this case, the settlement of the concrete track may be effectively reduced by arranging a small number of small-diameter piles beneath the track. This paper presents the effect of pile installation on the reduction of concrete track's settlement. A 3D finite difference method was employed to model the piled concrete tracks. A parametric study was carried out to assess the effect of varying soil condition and pile arrangements. From the analysis results, it is verified that the effect of the pile installation is significant to effectively reduce the settlement of concrete track. Optimal number of pile rows and pile spacings was proposed for the economical design of a piled concrete track. The bearing mechanism of piles was also investigated by analyzing load sharing characteristics of pile according to soil conditions and pile arrangements.
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
문제 정의
따라서 말뚝지지 전면기초의 설계개념을 철도 분야에 적용하여, 궤도 하부에 소수의 소구경 말뚝을 적절히 배치하여 설치하면 연약지반에 설치된 콘크리트궤도에 발생하는 침하를 효과적으로 감소시킬 수 있을 것으로 기대된다. 본 논문에서는 말뚝 설치로 인한 콘크리트궤도의 침하감소 효과를 수치해석을 통해 평가하였다. 말뚝이 설치된 콘크리트 궤도의 해석을 위해 3차원 유한차분법을 이용하여 지반을 모델링하였으며, 말뚝과 콘크리트 슬래브는 유한요소로 모델링하였다 지반 조건과 말뚝 배치를 변화에 따른 궤도의 침하 거동 변화를 파악하고자 하였으며, 지반 조건에 대해서는 노반하부 원지반의 강성을 변화 시켰고, 말뚝 배치에 대해서는 말뚝의 열수와 간격을 변화시켰다.
본 연구에서는 콘크리트 슬래브만으로도 지지력은 충분히 확보되나 과도한 침하가 예상되는 경우 침하량 감소 목적으로써의 말뚝 설치 효과를 평가하고자 하였다. 따라서 말뚝 선단이 단단한 지반에 안치된 선단지지 말뚝이 아닌 주면마찰력에 의해 대부분의 하중을 지지하는 직경 30cm의 소구경 마찰말뚝을 대상으로 하였다.
즉 열차 하중에 의하여 발생하는 지반 내 응력 증가로 인해 지반의 강도를 초과한 소성상태가 발생할 가능성은 거의 없으며, 실제 해석 결과에도 소성영역은 거의 발생하지 않는 것으로 나타났다. 따라서 침하량 평가를 목적으로 하는 본 연구에서는 원지반의 강성만을 변화시킨 해석을 수행하였다. 원지반은 균질한 점성토 지반으로 가정하였으며, 탄성계수를 lOMPa, 2OMPa, 30MPa, 40MPa, 5OMPa, 60MPa의 6종류로 변화 시켰다.
점선으로 나타낸 콘크리트궤도 레일 상부에서의 허용 침하기준 4mm와 비교하면, 원지반 탄성계수가 50MPa 이상인 경우 레일 상부에서의 침하량이 4mm보다 작아서 말뚝 설치와 같은 침하 억제 공법의 적용 없이도 허용 침하기준을 만족시키는 것을 알 수 있으며, 따라서 본 연구에서는 원지반 탄성계수가 40MPa 이하인 경우에 국한하여 말뚝 설치 효과를 분석하였다.
본 논문에서는 수치해석을 통해 콘크리트궤도에 대한 침하 억제 수단으로서의 말뚝 설치 효과를 평가하였으며, 다음과 같은 결론을 얻을 수 있었다.
본 연구는 말뚝지지 전면기초의 개념을 철도분야에 적용하여 말뚝 설치를 통한 콘크리트궤도의 효율적인 침하 억제 가능성을 타진하기 위한 것으로 아직까지는 근본적이고 이론적인 단계에 있다. 따라서 앞으로 제시된 수치해석의 결과를 정량적으로 활용하기 위해서는, 현장계측, 실물 재하시험 등의 연구를 통한 적용 해석기법에 대한 검증이 필요하며 더불어 실무적인 관점에서 타 지반보강공법과의 경제성 측면의 비교 분석이 이루어 할 것이다.
가설 설정
0m까지 고려하였다. 원지반은 비교적 연약한 점성토 지반을 대상으로 하였으며, 12m 깊이까지 균질하게 분포하는 것으로 가정하였고, 폭은 90m로 성토 하단부 폭(18m)의 5배가 되도록 하여 경계효과를 배제하고자 하였다. 경계조건으로는 4개의 수직면에 대해서는 수평방향으로, 바닥면에 대해서는 수직방향으로 각각 구속하였다.
3GN/m2을 적용하였으며, 말뚝과 지반사이의 부착력 ㈤ 및 마찰각。)은 각각 원지반 점착력(c)과 내부마찰각(0)의 2/3 정도 되는 6.0kPa과 7。로 가정하였으며, 이는 Bowles(1988)가 제시한 콘크리트와 흙 사이의 일반적인 관계인 片0.6〜0.8饱 4=0.5~0.7c를 근거로 하였다. 말뚝 두부와 궤도사이의 연결부는 콘크리트궤도의 셸유한요소와 말뚝유한요소의 공통된 절점을 사용하여 연결하였으며, 연결점의 회전 자유도를 완전히 구속하여 강결된 것으로 가정하였다.
7c를 근거로 하였다. 말뚝 두부와 궤도사이의 연결부는 콘크리트궤도의 셸유한요소와 말뚝유한요소의 공통된 절점을 사용하여 연결하였으며, 연결점의 회전 자유도를 완전히 구속하여 강결된 것으로 가정하였다.
지반조건에 대해서는 원지반의 강성을 변화 시킨 해석을 수행하였으며 강화노반 및 상부노반층은 표 2에 제시한 기준을 따라 시공되었다고 가정하였다. 상부 하중에 의해 하부지반의 응력이 크게 증가하는 구조물 기초와 다르게 열차 하중을 받는 콘크리트 궤도의 경우는 원지반이 높은 응력수준에 이르지 않기 때문에 본 연구와 같은 선형탄성-완전소성 모델을 사용한 경우 원지반의 강도는 해석결과에 거의 영향을 미치지 못한다.
따라서 침하량 평가를 목적으로 하는 본 연구에서는 원지반의 강성만을 변화시킨 해석을 수행하였다. 원지반은 균질한 점성토 지반으로 가정하였으며, 탄성계수를 lOMPa, 2OMPa, 30MPa, 40MPa, 5OMPa, 60MPa의 6종류로 변화 시켰다. Bowles( 1988)7} 제시한 전형적인 흙의 탄성계수 범위에 의하면 lOMPa〜 60MPa의 탄성계수는 아주 연약한 점성토에서 중간 정도 연약한 점성토의 범주에 해당한다.
제안 방법
본 논문에서는 말뚝 설치로 인한 콘크리트궤도의 침하감소 효과를 수치해석을 통해 평가하였다. 말뚝이 설치된 콘크리트 궤도의 해석을 위해 3차원 유한차분법을 이용하여 지반을 모델링하였으며, 말뚝과 콘크리트 슬래브는 유한요소로 모델링하였다 지반 조건과 말뚝 배치를 변화에 따른 궤도의 침하 거동 변화를 파악하고자 하였으며, 지반 조건에 대해서는 노반하부 원지반의 강성을 변화 시켰고, 말뚝 배치에 대해서는 말뚝의 열수와 간격을 변화시켰다. ]해석결과로 지반 조건과 말뚝배치의 변화에 따른 콘크리트 궤도의 침하 거동과 말뚝의 하중 분담 특성을 제시하였으며, 이에 대한 분석을 통해 경제적인 설계를 위한 합리적인 말뚝배치를 제안하였고, 콘크리트궤도 하부에 설치된 말뚝의 지지 메커니즘을 파악하였다.
말뚝이 설치된 콘크리트 궤도의 해석을 위해 3차원 유한차분법을 이용하여 지반을 모델링하였으며, 말뚝과 콘크리트 슬래브는 유한요소로 모델링하였다 지반 조건과 말뚝 배치를 변화에 따른 궤도의 침하 거동 변화를 파악하고자 하였으며, 지반 조건에 대해서는 노반하부 원지반의 강성을 변화 시켰고, 말뚝 배치에 대해서는 말뚝의 열수와 간격을 변화시켰다. ]해석결과로 지반 조건과 말뚝배치의 변화에 따른 콘크리트 궤도의 침하 거동과 말뚝의 하중 분담 특성을 제시하였으며, 이에 대한 분석을 통해 경제적인 설계를 위한 합리적인 말뚝배치를 제안하였고, 콘크리트궤도 하부에 설치된 말뚝의 지지 메커니즘을 파악하였다.
그림 2에는 수치해석 모델의 모식도를 나타내었다. 원지반으로부터 3m 높이로 강화노반과 상부노반이 성토된 경우에 대하여 모델링 하였으며, 모델링의 범위는 일반적인 단선 궤도 폭과 대차 간격(한대의 대차에 의한 영향 범위)을 고려하여 폭 7.2m, 길이 18.2m로 결정하였다. 길이 18.
원지반은 비교적 연약한 점성토 지반을 대상으로 하였으며, 12m 깊이까지 균질하게 분포하는 것으로 가정하였고, 폭은 90m로 성토 하단부 폭(18m)의 5배가 되도록 하여 경계효과를 배제하고자 하였다. 경계조건으로는 4개의 수직면에 대해서는 수평방향으로, 바닥면에 대해서는 수직방향으로 각각 구속하였다.
모델링하였다. 노반층과 원지반의 두께 및 탄성계수는 표 1에 제시된 조건을 참조하여 결정하였으며, 강도는 일반적으로 사용되는 값을 적용하였다. 원지반의 강성에 대해서는 탄성계수를 lOMPa, 20MPa, 30MPa, 40MPa, 50MPa, 60MPa의 6가지 경우로 변화시켰다.
노반층과 원지반의 두께 및 탄성계수는 표 1에 제시된 조건을 참조하여 결정하였으며, 강도는 일반적으로 사용되는 값을 적용하였다. 원지반의 강성에 대해서는 탄성계수를 lOMPa, 20MPa, 30MPa, 40MPa, 50MPa, 60MPa의 6가지 경우로 변화시켰다. 표 2는 해석에 사용된 노반층 및 원지반층의 두께, 탄성계수 및 강도를 나타낸다
3m 의 탄성연속체로 모델링하였다. 레일은 빔(beam) 유한요소를 이용하여 모델링하였다. 레일패드는 수직 방향으로 등가의 축강성을 갖는 빔유한요소로 모델링 하였으며, 이를 통해 레일의 빔요소와 TCL층의 셸유한요소가 연결되어 열차하중이 하부로 전달될 수 있도록 하였다.
레일은 빔(beam) 유한요소를 이용하여 모델링하였다. 레일패드는 수직 방향으로 등가의 축강성을 갖는 빔유한요소로 모델링 하였으며, 이를 통해 레일의 빔요소와 TCL층의 셸유한요소가 연결되어 열차하중이 하부로 전달될 수 있도록 하였다. 궤도 재료의 물성치는 전형적 인 값을 사용하였으며 표 3에 나타내었다.
하였다. 모든 말뚝은 길이가 10m로 두개의 절점으로 이루어진 50cm 길이의 선형 유한요소 20개를 결합하여 하나의 말뚝을 모델링하였다. 말뚝과 지반사이의 경계면(interface)에서는 각 말뚝요소의 절점과 주변 지반요소절점 사이에 부착된 전단 및 연직 스프링을 통해 말뚝 연속체와 지반연속체를 연계함으로써 말뚝요소의 주변 지반요소에 대한 상대변위와 전단항복을 고려하였다.
모든 말뚝은 길이가 10m로 두개의 절점으로 이루어진 50cm 길이의 선형 유한요소 20개를 결합하여 하나의 말뚝을 모델링하였다. 말뚝과 지반사이의 경계면(interface)에서는 각 말뚝요소의 절점과 주변 지반요소절점 사이에 부착된 전단 및 연직 스프링을 통해 말뚝 연속체와 지반연속체를 연계함으로써 말뚝요소의 주변 지반요소에 대한 상대변위와 전단항복을 고려하였다. 말뚝 요소의 각 절점에 부착된 전단스프링의 단위 길이당 스프링 계수는 ITASCA(1997)에서 제시한 일반적인 값인 11.
다양한 말뚝 배치 형태에 따른 콘크리트궤도 침하 거동의 변화를 검토하기 위해, 말뚝의 열수와 말뚝 간격을 변화 시켜 해석을 수행하였다. 말뚝의 열수는 그림 3에 나타낸 것과 같이 열차진행방향으로 말뚝을 1열, 2열, 3열로 배치하여 해석을 수행하였으며, 각각 1 열로 설치된 경우는 궤도 중앙에 2열로 설치된 경우는 레일 하부에, 3열로 설치된 경우는 궤도 중앙과 좌우 측변에 말뚝열을 배치하였다
해석을 수행하였다. 말뚝의 열수는 그림 3에 나타낸 것과 같이 열차진행방향으로 말뚝을 1열, 2열, 3열로 배치하여 해석을 수행하였으며, 각각 1 열로 설치된 경우는 궤도 중앙에 2열로 설치된 경우는 레일 하부에, 3열로 설치된 경우는 궤도 중앙과 좌우 측변에 말뚝열을 배치하였다
말뚝 열의 개수와 더불어 열차진행방향의 말뚝 간격도 그림 4와 같이 네 가지 경우로 화 시켰으며, 종방향 말뚝 간격을 체결구 간격(0.65m)의 4배(2.6m), 5배(3.25m), 8 배(5.2m), 16배(10.4m)로 변화시킨 경우에 대하여 각각 해석을 수행하였다.
즉, 말뚝 배치에 대해서는 말뚝열을 3종류로, 말뚝 간격을 4종류로 변화시킨 12종류의 형태를 고려하였다.
우선 말뚝 설치 여부에 따른 침하거동의 차이를 비교하기 위해 말뚝이 설치되지 않은 경우에 대하여 원지반 탄성계수를 lOMPa, 20MPa, 30MPa, 40MPa, 50MPa, 6OMPa의 6종류로 변화시킨 해석을 수행하였다. 말뚝이 설치된 경우에 대해서는 그림 3과 그림 4에 나타낸 바와 같이 말뚝 열과 간격을 변화시킨 12 종류의 말뚝 배치 형태에 대하여 각각 원지반 탄성계수가 lOMPa, 20MPa, 30MPa, 40MPa인 네 종류의 지반조건에서 모두 48 종류의 조건에 대한 해석을 수행하였다 말뚝이 설치된 경우 원지반 탄성계수의 상한값을 40MPa로 한정한 이유는, 해석 결과 원지반의 강성이 5OMPa 이상인 경우 말뚝을 설치하지 않아도 허용침하 기준을 만족하는 것으로 나타났기 때문이다.
대상 데이터
콘크리트궤도에 대해서는 TCL층은 셸(shell) 유한요소를 사용하여 크기 3.2mx 18.2m, 두께 0.24m인 판으로 모델링하였고, HSB층은 크기 4.0mx 18.2m, 두께 0.3m 의 탄성연속체로 모델링하였다. 레일은 빔(beam) 유한요소를 이용하여 모델링하였다.
따라서 말뚝 선단이 단단한 지반에 안치된 선단지지 말뚝이 아닌 주면마찰력에 의해 대부분의 하중을 지지하는 직경 30cm의 소구경 마찰말뚝을 대상으로 하였다. 이를 위해 말뚝 선단에서 지지층까지의 거리가 10m 이상 되도록 하였으며, 해석결과 말뚝선단부에는 거의 하중이 전달되지 않고 주변부에서 대부분의 하중을 분담하여 연구목적에 부합되는 것으로 나타났다.
말뚝은 HL4C3Z)에 내장된 말뚝요소를 이용하여 모델링 하였다. 모든 말뚝은 길이가 10m로 두개의 절점으로 이루어진 50cm 길이의 선형 유한요소 20개를 결합하여 하나의 말뚝을 모델링하였다.
이론/모형
수치해석에는 Itasca Consulting Group, Inc.에서 개발한 상용 유한차분해석 프로그램인 FLAC3D(Fast Lagrangian Analysis of Continua 3D)를 사용하였다. 그림 2에는 수치해석 모델의 모식도를 나타내었다.
지반에 대해서는 강화노반, 상부노반 및 원지반을 Mohr-Coulomb 파괴기준을 적용한 선형탄성-완전소성재료로 모델링하였다. 노반층과 원지반의 두께 및 탄성계수는 표 1에 제시된 조건을 참조하여 결정하였으며, 강도는 일반적으로 사용되는 값을 적용하였다.
성능/효과
따라서 말뚝 선단이 단단한 지반에 안치된 선단지지 말뚝이 아닌 주면마찰력에 의해 대부분의 하중을 지지하는 직경 30cm의 소구경 마찰말뚝을 대상으로 하였다. 이를 위해 말뚝 선단에서 지지층까지의 거리가 10m 이상 되도록 하였으며, 해석결과 말뚝선단부에는 거의 하중이 전달되지 않고 주변부에서 대부분의 하중을 분담하여 연구목적에 부합되는 것으로 나타났다. 이는 Tan 등(2004)이 매우 연약한 지반에 설치된 구조물에 대하여 짧은 마찰말뚝을 이용하여 효과적으로 침하를 억제한 예와 같이, 침하량 감소 목적의 말뚝 사용에 관련된 말뚝 지지 전면기초의 기본 개념을 따른 것이다.
최대침하량은 원지반의 탄성계수가 lOMPa에서 20MPa로 증가하는 경우 급격히 감소하였으나, 20MPa 이후에는 탄성계수의 증가에 대하여 선형적으로 서서히 감소하였다. 따라서 본 연구에서 고려하는 콘크리트궤도 조건에서는 원지반 개량 시 원지반 탄성계수를 20MPa 이상으로 증가시키는 것이 침하 거동 향상을 위해서 매우 효과적이고 필수적인 방법인 것으로 평가되었다.
2m 범위에 설치된 총 말뚝 개수이다. 설치된 말뚝 개수가 1개에서 12개로 증가하는 경우는 말뚝개수가 증가함에 따라 최대침하량이 감소하는 효과가 대체로 크나, 말뚝 개수가 16개 이상으로 증가하면 그 감소 효과가 떨어지는 것으로 나타났다. 즉 궤도 Im 당 말뚝 개수가 0.
설치된 말뚝 개수가 1개에서 12개로 증가하는 경우는 말뚝개수가 증가함에 따라 최대침하량이 감소하는 효과가 대체로 크나, 말뚝 개수가 16개 이상으로 증가하면 그 감소 효과가 떨어지는 것으로 나타났다. 즉 궤도 Im 당 말뚝 개수가 0.9개/m(18.2m 길이에 16개의 말뚝 설치된 경우) 이상인 경우는 말뚝 설치 개수 증가에 의한 침하량 감소 효과가 상대적으로 작은 것으로 평가되었다.
반면에 원지반 탄성계수가 20MPa, 30MPa, 40MPa인 경우는 궤도 Im 당 말뚝 설치 개수가 각각 0.4개/rn, 0.3 개/m, 0.1 개/m가 되면 허용침하기준을 만족시킬 수 있는 것으로 나타나서, 말뚝 설치를 통해 효율적으로 침하를 허용치 이내로 억제시킬 수 있는 것으로 평가되었다.
6m로 감소시켜 말뚝을 1열로 배치할 때 침하량이 터크게 나타났다. 따라서 동일한 개수의 말뚝을 설치하는 경우 말뚝 간격이 상대적으로 클 때는 말뚝을 2열로 배치하는 것보다 1열로 배치하는 것이 침하량 감소 효과가 크고, 말뚝 간격이 작은 경우는 말뚝을 1열로 배치하는 것보다 2열로 배치하는 것이 침하량 감소 효과가 더 큰 경향이 나타났다.
종합적으로 정리하면, 단위 길이당 동일한 개수의 말뚝을 설치하는 경우, 말뚝 간격이 넓은 경우에는 말뚝 열을 1열로 하여 되도록 말뚝 간격을 최소화 하는 것이 말뚝에 의한 침하 감소 효과가 큰 반면에, 말뚝이 5.2m 이하의 좁은 간격으로 설치되는 경우는 말뚝을 2열로 설치하는 것이 최적의 침하 감소 효과를 얻을 수 있는 것으로 평가되었다.
말뚝의 하중분담율은 말뚝 설치개수 및 지반조건에 따라 최소 19.5%에서 최대 92%까지 증가하는 것으로 나타났으며, 그 증가율은 말뚝 설치개수가 증가함에 따라 감소하는 경향이 나타났다.
2m인 경우의 해석 결과이다. 원지반의 강성이 작을수록 노반에 비해 말뚝이 분담하는 하중의 비율이 커지는 경향이 나타났으며, 특히 원지반 탄성계수가 10M僅a로 매우 작은 경우 다른 경우에 비해 말뚝의 흐1중분담율이 확연히 크게 나타났다. 그러나, 원지반 탄성계수가 20MPa 이상인 경우는 원지반 강성에 따른 하중 분담율의 변화는 매우 작게 나타났다.
그러나, 원지반 탄성계수가 20MPa 이상인 경우는 원지반 강성에 따른 하중 분담율의 변화는 매우 작게 나타났다. 또한 말뚝열의 수가 증가하면서 말뚝 하중분담율이 증가하였으며, 말뚝열의 수가 1열에서 2열로 증가한 경우 말뚝 하중 분담율이 약 20%~22% 정도 증가한 대 비해 2열에서 3열로 증가한 경우는 7吩11% 증가에 그쳐, 그림 7과 그림 8에 나타난 말뚝 개수의 증가에 따른 말뚝 설치효과의 비선형적인 증가 경향을 다시 한번 확인할 수 있다.
6m로 감소시켜 말뚝을 1 열로 배치할 때 말뚝 하중분담율이 더 작게 나타났다. 따라서 동일한 개수의 말뚝을 설치하는 경우, 말뚝 간격이 상대적으로 클 때는 말뚝을 2열로 배치하는 것보다 1 열로 배치하는 것이 말뚝 설치효과가 더 크게 발휘되며, 말뚝 간격이 작은 경우는 말뚝을 2열로 배치하는 것보다 1열로 배치하는 것이 말뚝 설치효과가 더 크게 발휘되는 것으로 나타났다.
이러한 결과는 앞에서 제시한 말뚝 배치에 따른 침하량 감소 효과와 정확하게 일치하는 결과로 단위 길이당 동일한 개수의 말뚝을 설치하는 경우, 말뚝 간격이 너무 넓은 것보다는 1 열이라도 좁은 간격으로 설치하는 것이 말뚝 하중분담율이 더 커서 말뚝 설치효과가 더 탁월하게 발휘되지만, 말뚝이 간격 5.2m 이하로 비교적 조밀하게 설치되는 경우는 오히려 2열로 설치하는 것이 최적의 말뚝 설치효과를 얻을 수 있는 것으로 평가되었다.
말뚝의 행별 분담 하중은 윤중작용 위치에 멀어질수록 작아져서, 1행은 51 〜62%, 2행은 25〜27%, 3행은 10-16%, 4행은 2〜6% 정도 하중을 각각 부담하였다. 각 행별 하중 분담 비율은 원지반 강성의 영향을 받으며, 윤중 작용 위치에서 가장 가까운 말뚝행의 하중 분담비율이 원지반 탄성계수가 lOMPa 인 경우 51%인데 비해, 40MPa인 경우 62%로 나타나 원지반 강성이 클수록 하중 작용 지점에 가까운 말뚝에 더 큰 하중이 집중되는 경향을 보였다. 또한 이러한 경향은 모든 말뚝 배치 형태에서 동일하게 나타났다.
(1) 원지반 탄성계수가 20MPa 정도의 연약한 점성토지 반에 설치된 콘크리트궤도에서 열차하중에 의한 과도한 침하가 예상되는 경우, 단위 이당 0.4개 정도의 소구경 마찰말뚝을 설치함으로써, 침하를 허용치 이내로 효과적으로 억제할 수 있는 것으로 평가 .되었다.
(2) 그러나, 원지반 탄성계수가 lOMPa 정도로 매우 연약한 점성토 지반에서는 소구경 마찰말뚝 설치를 통해 허용치 이내로 침하를 억제하기 위해서는 과도한 수의 말뚝이 필요한 것으로 예측되 었으며, 합리적인 침하 억제를 위해서는 다른 지반 개량 공법을 병행하는 것이 적합한 것으로 판단된다.
(3) 말뚝 열과 간격을 변화시켜 말뚝 배치에 따른 말뚝 설치효과를 침하량 감소 측면과 말뚝 분담하중 측면에서 분석한 결과, 말뚝 간격을 5m 보다 크게 설치하는 경우는 말뚝을 하나의 열로 배치하여 말뚝 간격을 최소화하는 것이 말뚝 설치효과가 큰 반면에, 말뚝간격을 5m 이하로 비교적 조밀하게 설치하는 경우는 말뚝을 2열로 배치하는 것이 최적의 설치 효과를 얻을 수 있는 것으로 평가되었다.
(4) 말뚝 개수의 증가에 따른 말뚝 설치효과는 비선형적인 증가 경향을 나타내어, 말뚝 개수의 증가에 따른 침하 감소율이나 말뚝 하중분담율의 증가율은 말뚝 개수의 증가와 함께 감소하는 경향이 나타났다. 또한 지반의 강성이 증가 할수록 하중 작용 지점에 가깝게 설치된 말뚝에 더 큰 하중이 집중되는 경향이 발견되었다.
상부 하중에 의해 하부지반의 응력이 크게 증가하는 구조물 기초와 다르게 열차 하중을 받는 콘크리트 궤도의 경우는 원지반이 높은 응력수준에 이르지 않기 때문에 본 연구와 같은 선형탄성-완전소성 모델을 사용한 경우 원지반의 강도는 해석결과에 거의 영향을 미치지 못한다. 즉 열차 하중에 의하여 발생하는 지반 내 응력 증가로 인해 지반의 강도를 초과한 소성상태가 발생할 가능성은 거의 없으며, 실제 해석 결과에도 소성영역은 거의 발생하지 않는 것으로 나타났다. 따라서 침하량 평가를 목적으로 하는 본 연구에서는 원지반의 강성만을 변화시킨 해석을 수행하였다.
또한 지반의 강성이 증가 할수록 하중 작용 지점에 가깝게 설치된 말뚝에 더 큰 하중이 집중되는 경향이 발견되었다.
후속연구
침하가 문제가 되고 있다. 따라서 말뚝지지 전면기초의 설계개념을 철도 분야에 적용하여, 궤도 하부에 소수의 소구경 말뚝을 적절히 배치하여 설치하면 연약지반에 설치된 콘크리트궤도에 발생하는 침하를 효과적으로 감소시킬 수 있을 것으로 기대된다. 본 논문에서는 말뚝 설치로 인한 콘크리트궤도의 침하감소 효과를 수치해석을 통해 평가하였다.
일반적으로 강화노반의 강성은 지반반력계수03。) 또는 재재하시의 탄성계수 从2를 이용하여 규정된다. 향후 국내 고속철도 콘크리트궤도의 토공구간에는 从2를 이용한 규정이 적용될 예정이며, 표 1에 나타낸 바와 같이 재재하시의 탄성계수(从2)와 초기재하시 탄성계수(Evi)에 대한 재재하시 탄성계수 비(氏2/&1)를 이용하여 총 50cm~65cm의 층 두께로 설계하도록 되어 있다. 강화노반의 하부에는 일정 강성(다짐도) 이상의 노반층을 조성하도록 규정하고 있다.
말뚝 설치에 따른 최대침하량 감소효과는 매우 크게 나타났으나, 비교적 조밀하게 24개의 말뚝이 설치된 경우■(궤도 Im당 말뚝개수 1.3개/m)에도 허용침하기준(40mm)을 만족시키지 못하므로, 경제성이 확보되는 합리적인 설계를 위해서는 다른 보강 대책이 병행되어야 할 것으로 판단된다.
이론적인 단계에 있다. 따라서 앞으로 제시된 수치해석의 결과를 정량적으로 활용하기 위해서는, 현장계측, 실물 재하시험 등의 연구를 통한 적용 해석기법에 대한 검증이 필요하며 더불어 실무적인 관점에서 타 지반보강공법과의 경제성 측면의 비교 분석이 이루어 할 것이다.
참고문헌 (8)
김홍택, 강인규, 황정순, 전웅진, 고용일 (1999), '유전자 알고리즘을 이용한 Piled Raft 기초의 최적설계', 한국지반공학회 '99 가을학술발표회, 415-422
Bowles, J. E. (1988), Foundation Analysis and Design. 4th edition, McGraw-Hill
Burland, J. B., Btoms, B. B. and De Mello, V. F. B (1977), 'Behaviour of Foundations and Structures', Proc. 9th Int. Conf. Soil Mech. Found. Engng, Tokyo, Vol.2, 495-546
Itasca Consulting Group Inc. (1997), FLAC3D Manual: Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 2.0, Itasca Consulting Group Inc., Minnesota, USA
Horikoshi K and Randolph M. F. Centrifuge modeling of piled raft foundation on clay', Geotechnique 1996; 46(4); 741-752
Kim, K, Lee, S-H, Kim, K-S, Chung C-K, Kim, M. and LEE, H. (2002), 'Optimum Pile Arrangement for Minimizing Differential Settlements in Piled Raft Foundation', Computers and Geotechnics Vol.28, pp.235-253
Sommer H, Tamaro G, and De Benedicttis C (1991), 'Messes Turm, Foundations for the Tallest Building in Europe', Proceeding 4th International Deep Foundation Institute Conference, Stressa, 1991, pp. 139-145
Tan Y. C., Chow C. M., and Gue S. S. (2004) 'Piled Raft with Short Piles for Low-Rise Buildings on very Soft Clay', 15th SEAGC, Bangkok
이 논문을 인용한 문헌
저자의 다른 논문 :
활용도 분석정보
상세보기
다운로드
내보내기
활용도 Top5 논문
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다. 더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.