• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

SOI 기술의 이해와 고찰: 소자 특성 및 공정, 웨이퍼 제조

Basic Issues in SOI Technology : Device Properties and Processes and Wafer Fabrication


The ever increasing popularity and acceptance in the market place of portable systems, such as cell phones, PDA, notebook PC, etc., are fueling effects in further miniaturizing and lowering power consumption in these systems. The dynamic power consumption due to the CPU activities and the static power consumption due to leakage currents are two major sources of power consumption. Smaller devices and a lower de voltage lead to reducing the power requirement, while better insulation and isolation of devices lead to reducing leakage currents. All these can be harnessed in the SOI (silicon-on-insulator) technology. In this study, the key aspects of the SOI technology, mainly device electrical properties and device processing steps, are briefly reviewed. The interesting materials issues, such as SOI structure formation and SOI wafer fabrication methods, are then surveyed. In particular, the recent technological innovations in two major SOI wafer fabrication methods, namely wafer bonding and SIMOX, are explored and compared in depth. The results of the study are nixed in that, although the quality of the SOI structures has shown great improvements, the processing steps are still found to be too complex. Between the two methods, no clear winner has yet emerged in terms of the product quality and cost considerations.

저자의 다른 논문

참고문헌 (35)

  1. J.-L. Pelloie, Microelectronic Engineering, 39, 155 (1997) 
  2. A. Uhlir, Jr., Bell Syst. Tech. J., 35, 333 (1956) 
  3. D, R. Turner, J. Electrochem. Soc., 105, 402 (1958) 
  4. M. I. J. Beale, N. G Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, Appl, Phys. Lett., 46, 86 (1985) 
  5. M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, J. Crystal Growth, 73, 622 (1985) 
  6. R. L. Smith and S. D. Collins, J. Appl, Phys., 71, R 1 (1992) 
  7. Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi, J. Electrochem. Soc., 122, 1351 (1975) 
  8. T. Unagami, Jpn. J. Appl. Phys., 19, 231 (1980) 
  9. K. Imai, Solid-State Electron., 24, 159 (1981) 
  10. K. Imai and H. Unno, IEEE Trans. Electron Devices, 31, 297 (1984) 
  11. L. A. Nesbit, IEDM 84, 800 (1984) 
  12. K. Barla, J. J. Yon, R. Herino, and G. Bomchil, Insulating Films on Semiconductors, ed. J. J. Simonne and J. Buxo, p.53, Elsevier Science Publishers B.V. (North-Holland) (1986) 
  13. J. D. Benjamin, J. M. Keen, A. G. Cullis, B. Innes, and N. G. Chew, Appl, Phys. Lett., 49, 716 (1986) 
  14. T. L. Lin and K. L. Wang, Appl, Phys. Lett., 49, 1104 (1986) 
  15. K. Barla, G. Bomchil, R. Herino, A. Monroy, and Y. Gris, Electron. Lett., 22, 1291 (1986) 
  16. S. S. Tsao, IEEE Circuits and Devices Magazine, November 1987, p.3 
  17. K. Barla, G. Bomchil, R. Herino, and A. Monroy, IEEE Circuits and Devices Magazine, November 1987, p.11 
  18. K. Sakaguchi, N. Sato, K. Yamagata, Y. Fujiyama, and T. Yonehara, Jpn. J. Appl. Phys., 34, 842 (1995) 
  19. N. Sato, K. Sakaguchi, K. Yamagata, Y. Fujiyarna, T. Yonehara, J. Electrochem. Soc., 142, 3116 (1995) 
  20. T. Yonehara, K. Sakaguchi, and N. Sato, Electrochem. Soc. Proc., 95-7, p.47, The Electrochemical Society, Pennington (1995) 
  21. N. Sato, K. Sakaguchi, K. Yamagata, Y. Fujiyama, Jpn. J. Appl. Phys., 35, 973 (1996) 
  22. K. Sakaguchi, K. Yanagita, H. Kurisu, H. Suzuki, K. Ohrni, and T. Yonehara, PV99-3, Silicon-on-Insulator Technology and Devices, ed. P. L. Hemment, p.117, The Electrochemical Society, Pennington (1999) 
  23. K. Sakaguchi, K. Yanagita, H. Kurisu, H. Suzuki, K. Ohmi, and T. Yonehara, SSDM 2000 Extended Abstracts, p.484, The Japan Society of Applied Physics, Yokohama (2000) 
  24. N. Sato, S. Ishii, T. Yonehara, PV2000-13, CVD, ed. M. D. Allendorf and M. L. Hitchman, p.435, The Electrochemical Society, Pennington (2000) 
  25. K. Sakaguchi and T. Yonehara, Solid State Technology, June 2000, p.88 
  26. J.-P, Colinge, Silicon-on-Insulator Technology: Materials to VLSI, 2nd ed., p.50, Kluwer Academic Publishers, Boston (1997) 
  27. N. Sato and T. Yonehara, Appl. Phys. Lett., 65, 1924 (1994) 
  28. N. Sato, M. Ito, J. Nakayama, and T. Yonehara, SSDM 98 Extended Abstracts, p.298, The Japan Society of Applied Physics, Yokohama (1998) 
  29. M. Ito, K. Yamagata, H. Miyabayashi, and T. Yonehara, Proceedings of 2000 IEEE International SOI Conference, p.10 (2000) 
  30. S. Nakashima and K. Izumi, J. Mater. Res., 8, 523 (1993) 
  31. S. Nakashima, T. Katayama, Y. Miyamura, A. Matsuzaki, M. Kataoka, D. Ebi, M. Imai, K. Izumi, and N. Ohwada, J. Electrochem. Soc., 143, 244 (1996) 
  32. J. Liu, S. S. K. Lyer, C. Hu, N. W. Cheung, R. Gronsky, J. Min, and P. Chu, Appl. Phys. Lett., 67, 2361 (1995) 
  33. N. Hatzopoulos, W. Skorupa, and D. I. Siapkas, J. Electrocem. Soc., 147, 354 (2000) 
  34. R. E. Bendernagel, K. S. Choe, B. Davari, K. E. Fogel, D. K. Sadana, G. G. Shahidi, S. Tiwari, United States Patent, No.: US 6,800,518 82, October 5, 2004 
  35. SEMI M47-1101, Specification for Silicon-on-Insulator (SOI) Wafers for CMOS LSI Applications, Semiconductor Equipment and Materials International (2001) 

이 논문을 인용한 문헌 (1)

  1. Choe, Kwang-Su 2008. "Investigation of Optimal Channel Doping Concentration for 0.1\;μm SOI-MOSFET by Process and Device Simulation" 한국재료학회지 = Korean journal of materials research, 18(5): 272~276 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일