• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Simulation of Grape Downy Mildew Development Across Geographic Areas Based on Mesoscale Weather Data Using Supercomputer

The plant pathology journal v.21 no.2 , 2005년, pp.111 - 118  

Weather data for disease forecasts are usually derived from automated weather stations (AWS) that may be dispersed across a region in an irregular pattern. We have developed an alternative method to simulate local scale, high-resolution weather and plant disease in a grid pattern. The system incorporates a simplified mesoscale boundary layer model, LAWSS, for estimating local conditions such as air temperature and relative humidity. It also integrates special models for estimating of surface wetness duration and disease forecasts, such as the grapevine downy mildew forecast model, DMCast. The system can recreate weather forecasts utilizing the NCEP/NCAR reanalysis database, which contains over 57 years of archived and corrected global upper air conditions. The highest horizontal resolution of 0.150 km was achieved by running 5-step nested child grids inside coarse mother grids. Over the Finger Lakes and Chautauqua Lake regions of New York State, the system simulated three growing seasons for estimating the risk of grape downy mildew with 1 km resolution. Outputs were represented as regional maps or as site-specific graphs. The highest resolutions were achieved over North America, but the system is functional for any global location. The system is expected to be a powerful tool for site selection and reanalysis of historical plant disease epidemics.

저자의 다른 논문

참고문헌 (16)

  1. Anonymous. 1989. User Guide for Digital Elevation Data. United States Geological Survey, Washington D. C 
  2. Johnson, L. F., Roczen, D. E., Youkhana, S. K., Nemani, R. R. and Bosch, D. F. 2003. Mapping vineyard leaf area with multispectral satellite imagery. Computers and Electronics in Agriculture, 38:33-44 
  3. Kaplan, M. L., Zack, J. W, Wong, V. C. and Tuccillo, J. J. 1982. Initial results from a mesoscale atmospheric simulation system and comparisons with an AVE-SESAME I data set. Mon. Wea. Rev. 110: 1564-1590 
  4. Mass, C. F. and Dempsey, D. P. 1985. A one-level, mesoscale model for diagnosing surface winds in mountainous and coastal regions. Mon. Wea. Rev. 113: 1211-1227 
  5. MESO. 1995. MASS version 5.6 Reference Manual. 118pp. [Available from MESO, Inc., 185 Jordan Road, Troy, NY 12180] 
  6. MESO. 1999. LAWSS Users Guide. 37pp. [Available from MESO, Inc., 185 Jordan Road, Troy, NY 12180] 
  7. Kim, K. R. and Park, E. W. 2000. Plant disease tracking system for rice - Internet user interface. Kor. J. Agric. For. Meteorol. 2:68-73 
  8. Park, E. W, Seem, R. C. Gadoury, D. M. and Pearson, R. C. 1997. DMCAST: a prediction model for grape downy mildew development. Vitic. Enol. Sci. 52:182-189 
  9. Manobianco, J., Zack, J. W. and Taylor, G. E. 1996. Workstationbased real-time mesoscale modeling designed for weather support to operations at the Kennedy Space Center and Cape Canaveral Air Station. Bull. Amer. Meteor. Soc. 77:653-672 
  10. Magarey, R. D., Russo, J. M., Seem, R. C. and Gadoury, D. M. 2005. Surface wetness duration under controlled environmental conditions. Agric. For. Metrol. 128:111-122 
  11. Kim, K. R. and Park, E. W 1998. Rice Disease Forecasting and Information System. http://epilab.snu.ac.kr/rice 
  12. Oke, T. R. 1987. Boundary layer climates. Routledge, London. 435 pp 
  13. Anonymous. 1991. Land-Use and Land-Cover Digital Data from 1 :250,000- and 1: 100,000-Scale Maps Factsheet. Data Users Guide 4. 33pp. United States Geological Survey, Reston, VA 
  14. Magarey, R. D., 1999. A theoretical standard for the estimation of surface wetness duration in grape. Ph.D. thesis, Cornell University, Ithaca, NY 
  15. Magarey, R. D., Seem, R. C. and Zack, J. W. 2000. A Local-area Agricultural Weather Simulation System (LAWSS), for environmental risk assessment. GIS/EM 4:47 
  16. Magarey, R. D., Seem, R. C., Russo, J. M., Zack, J. W., Waight, K. T., Travis, J. W. and Oudemans, P. V. 2001. Site-specific weather information without on-site sensors. Plant Dis. 85:1216-1226 

이 논문을 인용한 문헌 (1)

  1. 2010. "" The plant pathology journal, 26(1): 37~48 


원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일