• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

성능지표 선정을 통한 강인한 칼만필터 설계

Robust Kalman Filter Design via Selecting Performance Indices


In this paper, a robust stationary Kalman filter is designed by minimizing selected performance indices so that it is less sensitive to uncertainties. The uncertainties include not only stochastic factors such as process noise and measurement noise, but also deterministic factors such as unknown initial estimation error, modeling error and sensing bias. To reduce the effect on the uncertainties, three performance indices that should be minimized are selected based on the quantitative error analysis to both the deterministic and the stochastic uncertainties. The selected indices are the size of the observer gain, the condition number of the observer matrix, and the estimation error variance. The observer gain is obtained by optimally solving the multi-objectives optimization problem that minimizes the indices. The robustness of the proposed filter is demonstrated through the comparison with the standard Kalman filter.

저자의 다른 논문

참고문헌 (24)

  1. Kalman, R. E. and Bucy, R. S., 1961, 'New Results in Linear Filtering and Prediction Theory,' Trans. of the ASME Series D: J. of Basic Engineering, Vol. 83, No.3, pp. 95-108 
  2. Bernstein, D. S. and Haddad, W. M., 1989, 'Steady-State Kalman Filtering with an $H_{\infty}$ Error Bound,' Systems and Control Letters, Vol. 12, No.1, pp. 9-16 
  3. Khargonekar, P. P. and Rotea, M. A., 1992, 'Mixed $H_2$/H_{\infty}$, Filtering,' Proc. of the 31st Conference on Decision and Control, pp. 2299-2304 
  4. Chen, X. and Zhou, K., 2002, '$H_{\infty}$ Gaussian Filter on Infinite Time Horizon,' IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 49, No.5, pp. 674-679 
  5. I. R. Petersen, Optimal guaranteed cost control and filtering for uncertain linear systems, IEEE translation on Automatic Control, AC-37 pp. 1971-1977, 1994 
  6. Xie, L. and Soh, Y. C., 1994, 'Robust Kalman Filtering for Uncertain Systems,' Systems and Control Letters, Vol. 22, No.2, pp. 123-129 
  7. Fu, M., de Souza, C. E. and Luo, Z. Q., 2001, 'Finite-Horizon Robust Kalman Filter Design,' IEEE Trans. on Automatic Control, Vol. 49, No.9, pp. 2103-2112 
  8. Geromel, J. C., 1999, 'Optimal Linear Filtering Under Parameter Uncertainty,' IEEE Trans. on Signal Processing, Vol. 47, No. 1, pp. 168- 175 
  9. Shaked, U., Xie, L. and Soh, Y. C., 2001, 'New Approaches to Robust Minimum Variance Filter Design,' IEEE Trans. on Signal Processing, Vol. 49, No.11, pp. 2620-2629 
  10. Bertsekas, D. P. and Rhodes, I. B., 1971, 'Recursive State Estimation for a Set-membership Description of Uncertainty,' IEEE Trans. on Automatic Control, Vol. 16, No.2, pp. 117-128 
  11. Jain, B. N., 1975, 'Guaranteed Error Estimation in Uncertain Systems,' IEEE Trans. on Automatic Control, Vol. 20, No.2, pp. 230-232 
  12. Savkin, A. V. and Petersen, I. R., 1995, 'Recursive State Estimation for Uncertain Systems with an Integral Quadratic Constraint,' IEEE Trans. on Automatic Control, Vol. 40, No.6, pp. 1080-1083 
  13. Kwon, S., Chung, W. K. and Youm, Y., 2003, 'A Combined Observer for Robust State Estimation and Kalman Filtering,' Proc. of the American Control Conference, pp. 2459-2464 
  14. Mehra, R. K., 1970, 'On the Identification of Variances and Adaptive Kalman Filtering,' IEEE Trans. on Automatic Control, Vol. 15, No.2, pp. 175-184 
  15. Sage, A. P. and Melsa, J. L., 1971, Estimation Theory with Application to Communications and Control, McGraw-Hill, Inc. 
  16. Lee, B. S., 1997, 'Quantitative Performance Comparison of Observers with Uncertainties,' M. S. Thesis, Hanyang University, Seoul, Korea 
  17. Jung, J. and Huh, K., 2002, 'Design of the Well-Conditioned Observer Using the Non-Normality Measure,' Trans. of the KSME, A, Vol. 26, No.6, pp. 1114-1119 
  18. Huh, K. and Stein, J. L., 1994, 'A Quantitative Performance Index for Observer-Based Monitoring Systems,' Trans. of the ASME: J of Dynamic Systems, Measurement, and Control, Vol. 116, pp. 487-497. 
  19. Golub, G. H. and Van Loan, C. F., 1996, Matrix Computations, 3rd Ed., The Johns Hopkins University Press 
  20. Sasa, S., 1998, 'Robustness of a Kalman Filter Against Uncertainties of Noise Covariances,' Proc. of the American Control Conference, pp. 2344-2348 
  21. Huh, K., Jung, J. and Stein, J. L., 2001, 'DiscreteTime Well-Conditioned State Observer Design and Evaluation,' Trans. of the ASME:.J of Dynamic Systems, Measurement, and Control, Vol. 123, No.4, pp.615-622 
  22. Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V., 1994, Linear Matrix Inequalities in System and Control Theory, SIAM 
  23. El Ghaoui, L., Delebeque, F. and Nikoukhah, R., 1999, LMITOOL Ver. 2.1, available via anonymous ftp to ftp.ensta.fr, directory pub/elghaoui/lmitool-2.1 
  24. Oishi, J. and Balakrishnan, V., 2000, 'Linear Controller Design for the NEC Laser Bonder via Linear Matrix Inequality Optimization,' In Advances in Linear Matrix Inequality Methods in Control (Edited by El Ghaoui, L. and Niculescu, S.-L.), SIAM, Philadelphia, pp. 295-307 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일