$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

공간 데이터 웨어하우스에서 해쉬 테이블을 이용한 데이터큐브의 생성 기법
Data Cube Generation Method Using Hash Table in Spatial Data Warehouse 원문보기

멀티미디어학회논문지 = Journal of Korea Multimedia Society, v.9 no.11, 2006년, pp.1381 - 1394  

이연 (인하대학교 컴퓨터공학부) ,  김형선 ((주)카이네스 GIS 공학연구소) ,  유병섭 (인하대학교 컴퓨터공학부) ,  이재동 (단국대학교 정보.컴퓨터 학부) ,  배해영 (인하대학교 컴퓨터공학부)

초록
AI-Helper 아이콘AI-Helper

축적된 데이터를 기반으로 의사결정을 지원하는 데이터 웨어하우스에서 빠른 응답을 제공하기 위하여 데이터큐브 생성기법에 대한 많은 연구가 진행되었다. 대표적으로 다차원 배열을 사용한 기법과 hyper-tree를 기반으로 하는 H-cubing 기법이 연구되었다. 하지만 전자는 다차원 집계 연산에 필요한 모든 데이터를 배열로 저장하여 데이터의 양이 많아질수록 메모리 사용이 증가하였으며 후자는 hyper-tree를 기반으로 모든 튜플을 트리로 구축하여 트리 구축비용이 증가하였다. 본 논문에서는 데이터 웨어하우스에서 해쉬 테이블을 이용한 효율적인 데이터큐브 생성 기법을 제안한다. 제안 기법은 데이터큐브 생성 시 가중치 맵핑 테이블과 레코드 해쉬 테이블을 사용하여 다차원 데이터의 저장될 레코드 순서를 빠르게 찾아 저장한다. 따라서 데이터큐브의 생성속도가 향상되며 해쉬 테이블 만을 유지하여 메모리 사용량이 감소한다. 이는 성능평가를 통해 기존 기법보다 데이터의 빠른 검색과 데이터큐브 생성 요청에 빠른 응답을 보였다.

Abstract AI-Helper 아이콘AI-Helper

Generation methods of data cube have been studied for many years in data warehouse which supports decision making using stored data. There are two previous studies, one is multi-way array algorithm and the other is H-cubing algorithm which is based on the hyper-tree. The multi-way array algorithm st...

주제어

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로