$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

19세기말부터 진행된 지구온난화를 규정하기 위해서는 기상관측목적의 지표대기온도(Surface air temperature; SAT) 측정이 시작된 19세기말 이전의 온도 자료가 필요하다. 다행히 과거의 지표온도(Ground surface temperature; GST)가 지중으로 전파되어 기록된 시추공 온도자료로 일반적으로 과거 약 1,000년 전까지의 기온변화에 대한 정보를 얻을 수 있다. 시추공 온도자료로부터 복원된 과거의 기온변화의 정보는 19세기말부터 시작된 지구온난화를 규정하고 또한 그 이전에 있었던 소빙하기(Little Ice Age)와 중세온난기(Medieval Warm Period) 같은 기후변화를 알아내는데 유용하게 사용될 수 있다.

Abstract AI-Helper 아이콘AI-Helper

To properly interpret and define climatic warming trends of the last $100\~150$ years.; climatic changes over the past several centuries must be constrained. High resolution surface air temperatures (SATs) to reconstruct global temperature trends extend back only to the late of 19th centu...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 시추공 온도자료를 이용하여 과거의 지표온도의 변화를 복원하는 원리와 각국의 연구결과 등을 제시함으로써 시추공 온도자료를 이용한 고기후 연구를 소개하고자 한다.

가설 설정

  • Downward penetration of an instantaneous 2 K surface temperature increase at various times after the event. (a) Curves are superimposed on average geothermal gradient (25℃/km) with depth, (b) Curves represent the perturbation only.
  • 1(a)는 시간에 따른 지중온도변화를 우리나라 평균 지온경사률 (25℃/km)을 더하여 그린 것이고, Fig. 1(b)는 지표온도 의 변화에 따른 지중온도의 변화만 그린 것이다. Fig.
  • 1은 식 (2)를 이용하여 지표면의 온도가 16℃에서 IWC로 2 K 만큼 갑자기 증가했을 때 이로 인한 지중 온도의 변화를 각 시간별로 나타낸 것이다. 암석의 평 균확산율은 W6m2/sec 로 가정하였다. Fig.
본문요약 정보가 도움이 되었나요?

참고문헌 (61)

  1. Beltrami, H., Ferguson, G., and Harris, R. N. (2005) Long-term tracking or climate change by underground temperatures. Geophys. Res. Lett., v. 32, doi:10.1029/2005GL023714 

  2. Beltrami, H., and Mareschal, J. C. (1991) Recent warming in Eastern Canada: evidence from geothermal measurements. Geophys. Res. Lett., v. 18, p. 605-608 

  3. Beltrami, H., and Mareschal, J. C. (1992) Ground temperature histories for Central and Easteru Canada from geothermal measurements: little ice age signature. Geophys. Res. Lett., v. 19, p. 692-698 

  4. Benfield, A. E. (1939) Terrestrial heat flow in Great Britain. Proc. R. Soc. London, Series A, v, 173, p. 428-450 

  5. Birch, E (1948) The effects of Pleistocene climatic variations upon geothermal gradients. Am. J. Sci., v. 246, p. 729-760 

  6. Bodri, L., and Cermak, V. (1998) Last 250 years climate reconstruction inferred from geothermal measurements in the Czech Republic. Tectonophysics, v. 291, p. 251-261 

  7. Bodri, L., and Cermak, V. (2005) Borehole temperatures, climate change and the pre-observational surface air temperature mean: Allowance for hydraulic conditions. Global and Planetary Change, v. 45, p. 265-276 

  8. Bodri, L., and Dovenyi, P. (2004) Climate change of the last 2000 years inferred from borehole temperatures: data from Hungary. Global and Planetary Change, v. 41, p. 121-133 

  9. Bullard, E. C. (1939) Heat flow in South Africa. Proc. R. Soc. London, Series A, v. 173, p. 474-502 

  10. Carslaw, H. S., and Jaeger, J. C. (1959) Conduction of heat in solids. 2nd edn, Oxford University Press, Oxford 

  11. Cermak, v., Bodri, L., and Safanda, J. (1992) Recent climate change recorded in the underground evidence from Cuba. Paleogeogr. Palaeoclimatol. Palaeoecol., v. 98, p. 219-223 

  12. Chapman, D. S., Chisholm, T. J., and Harris, R. N. (1992) Combining borehole temperature and meteorologic data to constrain past climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 98, p. 269-281 

  13. Chisholm T. J., and Chapman, D. S. (1992) Climate change inferred from analysis of borehole temperatures: An example from western Utah. J. Geophys. Res., v. 97, p. 14155-14175 

  14. Ciauser, C., Giese, P., Huenges, E., Kohl, T., Lehmann, H., Rybach, L., Safanda, J., Wilhelm, H., Windloff, K, and loth G. (1997) The thermal regime of the crystall. ine-.contrrrentl1 crust: Implications from the KTB. J. Geophys. Res., v. 102, p. 18417-18441 

  15. Clauser, C., and Huenges, E. (1993) KTB thermal regime and heat transport mechanisms-current knowledge. Scientific Drilling, v. 3, p. 271-281 

  16. Clauser, C., and Mareschal, J.-C. (1995) Ground temperature history in central Europe from borehole temperature data. Geophys. J. Int., v. 121, p. 805-817 

  17. Correia, A., and Safanda, J. (1999) Preliminary ground surface temperature' history in mainland Portugal reconstructed from borehole temperature logs. Tectonophysics, v. 306, p. 269-275 

  18. Deming, D. (1995) Climatic warming in North America: Analysis of borehole temperatures. Science, v. 268, p. 1576-1577 

  19. Deming, D., and Borel, R. A. (1995) Evidence for climatic warming in northcentral Oklahoma from analysis of borehole temperatures. J. Geophys. Res., v. 100, p. 22017-22032 

  20. Drury, M. J., Jessop, A. M., and Lewis, T. J. (1984) The detection of ground water flow by precise temperature measurements in boreholes. Geothermics, v. 13, p. 163-174 

  21. Drury, M. J. and Lewis, T. J. (1983) Water movement within Lac du Bonnet Batholith as revealed by detailed thermal studies of three closely-spaced boreholes. Tectonophysics, v. 95, p. 337-351 

  22. Edwardson, M. J., Girner, H. M., Parkison, H. R., Williams, C. D., and Matthews, C. S. (1962) Calculation of formation temperature disturbances caused by mud circulation. Journal of Petroleum Technology, April, p. 416-426 

  23. Golovanova, I. V., Harris, R. N., Selezniova, G. V., and Stulc, P. (2001) Evidence of climatic warming in the southern Urals region derived from borehole temperatures and meteorological data. Global and Planetary Change, v. 29, p. 167-188 

  24. Gosselin, C., and Mareschal, J.-C. (2003) Recent warming in northwestern Ontario inferred from borehole temperature profiles. J. Geophys. Res., v. 108, doi: 10.1029/2003JB002447 

  25. Goto, S., Hamamoto, H., and Yamano, M. (2005a) Climatic and environmental changes at southeastern coast of Lake Biwa over past 3000 years, inferred from borehole temperature data. Physics of the Earth and Planetary Interiors, v. 152, p. 314-325 

  26. Goto, S., Kim, H. C., Uchida, Y., and Okubo, Y. (2005b) Reconstruction of the ground surface temperature history from the borehole temperature data in the southeastern part of the Republic of Korea. Journal of Geophysics and Engineering, v. 2, p. 312-319 

  27. Harris, R. N., and Chapman, D. S. (1995) Climatic change on the Colorado Plateau of eastern Utah inferred from borehole temperatures. J. Geophys. Res., v. 100, p. 6367-6381 

  28. Harris, R. N., and Chapman, D. S. (2001) Mid-latitude( 30'-60'N) climatic warming inferred by combining borehole temperatures with surface air temperature. Geophys. Res. Lett., v. 28, p. 747-750 

  29. Hotchkiss, W. O., and Ingersoll, L. R. (1934) Post-glacial time calculations from recent geothermal measurements in the Calumet copper mines. J. Geol., v. 42, p. 113-142 

  30. Huang, S., PoUack, H. N., and Shen, P.-Y. (2000) Temperature trends over the past five centuries reconstructed from borehole temperature. Nature, v. 403, p. 756-758 

  31. Huang, S., Pollack, H. N., Wang, J.-Y., and Cermak, V. (1995) Ground surface temperature histories inverted from subsurface temperatures of two boreholes located in Panxi, SW China. Journal of Southeastern Asian Earth Sciences, v. 12, p. 113-120 

  32. Huenges, E., Burkhardt, H., and Erbas, K. (1990) Thermal conductivity profile of the KTB pilot borehole. Scientific Drilling, v. 1, p. 224-230 

  33. Jaeger, J. C. (1961) The effect of the drilling fluid on temperatures measured in boreholes. J. Geophys. Res., v. 66, p. 563-569 

  34. Jeffreys, H. (1937) The disturbances of the temperature gradient in the earth's crust by inequalities in height. Mon. Not. R. Astr. Soc. Geophys. Suppl., v. 4, p. 309-312 

  35. Jones, M. Q. W., Tyson, P. D., and Cooper, G. R. J. (1999) Modelling climatic change in South Africa from perturbed borehole temperature profiles. Quaternary International, v. 57/58, p. 185-192 

  36. Kukkonen, I. T., and Safanda, J. (1996) Paleoclimate and structure: the most important factors controlling subsurface temperatures in crystalline rocks. A case history from Outokumpu, eastern Finland, Geophys. J. Int., v. 126, p. 101-112 

  37. Lachenbruch, A. H. (1968) The effect of two-dimensional topography on superficial thermal gradients. U.S. Geol. Surv. Bull., 1203 E, U.S. Geological Survey 

  38. Lachenbruch, A. H., and Brewer, M. C. (1959) Dissipation of the temperature effect cif drilling a well in arctic Alaska. Geological Survey Bulletin, 1083 C, D.S. Geological Survey 

  39. Lachenbruch, A., and Marshall, B. V. (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science, v. 234, p. 689-696 

  40. Lane, E. C. (1923) Geotherms of the Lake Superior copper country. J. Geol., v. 42, p. 113-122 

  41. Lees, C. H. (1910) On the shapes of the isogeotherms under mountain ranges in radio-active districts. Proc. R. Soc. A., v. 83, p. 339-346 

  42. Lewis, T. J., and Wang, K. (1992) Influence of terrain on bedrock temperatures, Palaeogeog. Palaeoclimatol. Palaeoecol., v. 98, p. 87-100 

  43. Lewis, T. J., and Wang, K. (1998) Geothermal evidence for deforestation induced warming: Implications for the climate impact of land development. Geophys. Res. Lett., v. 25, p. 535-538 

  44. Majorowicz, J. A., Skinner, W. K., and Safanda, J., (2004) Large ground warming in the Canadian Arctic inferred from inversions of temperature logs. Earth and Planetary Science Letters. v. 221, p. 15-25 

  45. Mansure, A. J. and Reiter, M. (1979) A vertical ground water movement correction for heat flow. J. Geophys. Res., v. 84, p. 3490-3496 

  46. Mareschal, J.-C., and Vasseur, G. (1992) Ground temperature history from two deep boreholes in Central France. Paleogeog. Paleoclimat. Paleoecol., v. 98, p. 185-192 

  47. Okubo, Y., Kim, H.-C., Uchida, Y., and Safanda, J. (2002) Borehole data and climate reconstruction in Korea, in GeothermaV Dendrochronological Paleoclimate Reconstruction across Eastern Margin of Eurasia. Edited by M. Yamano, T. Nagao, and T. Sweda, Proceedings 2002 International Matsuyama Workshop 

  48. Pollack, H. N., and Chapman, D. S. (1993) Underground . records of changing climate. Scientific American, June, p. 44-50 

  49. Pollack, H. N., Demezhko, D. Y., Duchkov, A. D., Golovanova, 1. v., Huang, S., Shchapov, V. A., and Smerdon, J. E. (2003) Surface temperature trends in Russia over the past five centuries reconstructed from borehole temperatures. J. Geophys. Res., v. 108, doi: 10.1029/2002]8002154 

  50. Pollack, H. N., Huang, S., and Shen, P. Y. (1998) Climate change record in subsurface temperatures: A global perspective. Science, v. 282, p. 279-281 

  51. Pribnow, D., Williams, C. F., and Burkhardt, H. (1993) Well log derived estimates of thermal conductivity in crystalline rocks penetrated by the 4-km deep KTB Vorbohrung. Geophys. Res. Lett., v. 20, p. 1155-1158 

  52. Putnam S. N. and Chapman, D. S. (1996) A geothermal climate change observatory: First year results from Emigrant Pass in northwest Utah.J Geophys. Res., v. 101, p. 21877-21890 

  53. Rajver, D., Safanda, J.. and Shen, P. Y. (1998) The climate record inverted from borehole temperatures in Slovenia. Tectonophysics, v. 291, p. 263-276 

  54. Safanda,J.. and Rajver, D. (2001) Signature of the last ice age in the present subsurface temperatures in the Czech Republic and Slovenia. Global and Planetary Change, v. 29, p. 241-257 

  55. Sebagenzi, M. N., Vasseur, G., and Louis, P. (1992) Recent warming in southeastern Zaire (Central Africa) inferred from disturbed geothermal gradients. Paleogeog. Paleoclimat. Paleoecol., v. 98, p. 209-217 

  56. Shen, P. Y., Beck, A. E. (1991) Least squares inversion in borehole temperature measurements in functional space. J. Geophys. Res., v. 96, P.1996-19979 

  57. Shen, P. Y., Pollack, H. N., and Huang, S. (1996) Iference of ground surface temperature history from borehole temperature data: a comparison of two inverse methods. Global Planetary Change, v. 14, p. 49-57 

  58. Taniguchi, M., and Uemura, T. (2005) Effects of urbanization and groundwater flow on the subsurface temperature in Osaka, Japan. Physics and the Earth and Planetary Interiors, v. 152, p. 305-313 

  59. Vasseur, G., Bernard, Ph., Van de Meulebrouck, J., Kast, Y., and Jolivet, J. (1983) Holocene paleotemperatures deduced from geothermal measurements. Paleo-geogr. Paleoclimatol., Paleoecol., v. 43, p. 237-259 

  60. Wang, K., and Lewis, T. J. (1992) Geothermal evidence from Canada for a cold period before recent climatic warming. Science, v. 256, p. 1003-1005 

  61. Yamano, M., and Goto S. (2005) Long-term monitoring of the temperature profile in a deep borehole: Temperature variations associated with water injection, experiments and natural groundwater discharge. Physics and the Earth and planetary interiors, p. 326-334 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로