$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

평균 이동 알고리즘을 이용한 영상기반 실내 물체 추적

Vision-Based Indoor Object Tracking Using Mean-Shift Algorithm

Abstract

In this paper, we present tracking algorithm for the indoor moving object. We research passive method using a camera and image processing. It had been researched to use dynamic based estimators, such as Kalman Filter, Extended Kalman Filter and Particle Filter for tracking moving object. These algorithm have a good performance on real-time tracking, but they have a limit. If the shape of object is changed or object is located on complex background, they will fail to track them. This problem will need the complicated image processing algorithm. Finally, a large algorithm is made from integration of dynamic based estimator and image processing algorithm. For eliminating this inefficiency problem, image based estimator, Mean-shift Algorithm is suggested. This algorithm is implemented by color histogram. In other words, it decide coordinate of object's center from using probability density of histogram in image. Although shape is changed, this is not disturbed by complex background and can track object. This paper shows the results in real camera system, and decides 3D coordinate using the data from mean-shift algorithm and relationship of real frame and camera frame.

참고문헌 (8)

  1. 김종훈, 조겸래, 이대우, 노민식 '인공신경망을 이용한 헤드트레커 실험 구현' 춘계학술발표회, 한국항공우주학회, 2005. 4 
  2. Y. Boykoc and D. Huttenlocher, 'Adaptive bayesian recognition in tracking rigid objects,' proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 679-704, 2000 
  3. R. Rosales and S. Sclaroff, '3D trajectory recovery for tracking multiple objects and trajectory guided recognition of actions,' Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 117-123, 1999 
  4. M. Isard and A. Blake, 'Condensation-conditional density propagation for visual trakcing,' Int'l J. Computer Vision, vol. 29, no. 1, 1998 
  5. D. Comaniciu, V. Ramesh. 'Robust detection and tracking of human faces with an active camera,' IEEE Workshop on Visual Suveillance, pp. 11-18, 2000 
  6. D. Comaniciu and P. Meer, 'Mean shift analysis and applications,' IEEE Conference on Computer Vision and Pattern Recognition, pp. 1197-1203, 1999 
  7. D. Comaniciu, V. Ramesh, and P. Meer, 'Real-time tracking of non-rigid objects using mean shift,' Conference on Computer Vision and Pattern Recognition, 2000 
  8. G. B. Chattetji, P. K. Menon, and S. Sridhar, 'GPS/Machine vision navigation system for aircraft,' IEEE Transactions on Aerospace and Electronic Systems, vol. 33, no. 3, pp 

이 논문을 인용한 문헌 (2)

  1. Kim, Jong-Hun ; Lee, Dae-Woo ; Cho, Kyeum-Rae ; Jo, Seon-Yeong ; Kim, Jung-Ho ; Han, Dong-In 2008. "Vision Based Estimation of 3-D Position of Target for Target Following Guidance/Control of UAV" 제어·로봇·시스템학회 논문지 = Journal of institute of control, robotics and systems, 14(12): 1205~1211 
  2. 2010. "" International Journal of Control, Automation and Systems, 8(5): 1091~1099 

DOI 인용 스타일