$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

나노바이오기술을 이용한 환경모니터링용 바이오칩 시스템
Biochip System for Environmental Monitoring using Nanobio Technology 원문보기

한국생물공학회지 = Korean journal of biotechnology and bioengineering, v.22 no.6, 2007년, pp.378 - 386  

김영기 (한경대학교 화학공학과) ,  민준홍 (경원대학교 바이오나노학과) ,  오병근 (서강대학교 화공.생명공학과) ,  최정우 (서강대학교 화공.생명공학과)

초록
AI-Helper 아이콘AI-Helper

바이오센싱 디바이스는 본질적으로 생체인식소재와 신호전달장치로 구성된 집적화, 소형화된 분석시스템으로 많은 장점을 가지고 있다. 고민감도, 선택도, 단순성, 다성분 측정능력, 즉시측정능력 뿐 아니라 매우 작고, 고가의 장치가 필요없는 장점이 있다. 바이오센싱 디바이스의 개발을 위해서는 두 가지의 핵심요소기술이 필요하다. 이것은 생체인식소재모듈의 제작 (리셉터 개발 및 고정화기법)과 신호발생기술을 포함한 신호전달장치의 개발이다. 효소, DNA/RNA, 단백질, 세포 등의 다양한 생체인식소재가 바이오센싱 디바이스 제작을 위해 이용되어져 왔고, 신호전달시스템도 전기화학적, 광학적, mass sensitive transducer를 중심으로 매우 활발히 연구되어져 왔다. 본 고에서는 최근 개발된 바이오센싱디바이스에 대해 다루고, 향후 전망에 대해 논하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Bio-sensing devices, which are basically integrated and miniaturized assay systems consisted of bioreceptor and signal transducer, are advantageous in several ways. In addition to their high sensitivity, selectivity, simplicity, multi-detection capability, and real time detection abilities, they are...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 1). 그러므로 본고에서는 환경모니터링용으로 사용되는 핵산이용 바이오센서 및 칩을 공정 기술 중심으로 설명하고자 한다.
  • 신호전달기법에서도 전기화학적, 전기적, 광학적, mass sensitive 방법 등 다양한 기법에 대한 광범위한 연구개발성과들이 쏟아져 나오고 있다. 따라서 본고에서는 다양한 바이오센싱 디바이스 연구개발 분야 중에 생체소재에 초점을 맞춰 효소, 핵산, 단백질 (항체 등), 세포 기반의 바이오센싱 디바이스에 대한 최신의 연구결과를 소개하고자 한다.
  • 이를 단백질체학 (Proteomics)이라고 한다. 이는 발현되는 모든 단백질의 총합인 Proteom을 다루는 학문으로, 어떤 단백질이 얼마의 양으로 어떤 환경에서 발현되는가 하는 것을 파악함을 목적으로 한다(51). 이는 생명 현상을 이해함에 있어 DNA의 발현을 조사하는 것만큼 단백질의 분리 및 동정이 중요할 수 있음을 의미한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (75)

  1. Iwuoha, E. I., M. R. Smyth, and M. E. G. Lyons (1997), Organic Phase Enzyme Electrodes: Kinetics and Analytical Applications, Biosens. Bioelectron. 12, 53-75 

  2. Campanella, L., F. Pacifici, M. P. Sammartino, and M. Tomassetti (1998), A New Organic Phase Bienzymatic Electrode for Lecithin Analysis in Food Products, Bioelectrochem. Bioenerg. 47, 25-38 

  3. Morales, M. D., M. C. Gonzalez, B. Serra, A. J. Reviejo, and J. M. Pingarro (2005), Composite Amperometric Tyrosinase Biosensors for the Determination of The Additive Propyl Gallate in A Reversed Micellar Medium, Sens. Actuators B 106, 572-579 

  4. Stanca, S. E. and I. C. Popescu (2004), Phenols Monitoring and Hill Coefficient Evaluation using Ttyrosinase-Based Amperometric Biosensors, Bioelectrochemistry 64, 47-52 

  5. Sachez-Paniagua Lopez, M., E. Lopez-Cabarcos, and B. Lopez-Ruiz (2006), Organic Phase Enzyme Electrodes, Biomolecular Engineering 23, 135-147 

  6. Sanchez-Ferrer, A., J. N. Rodriguez Lopez, F. Garcia-Canovas, and F. Garcia Carmona (1995), Tyrosinase: A Ccomprehensive Review of Iits Mechanism, Biochim. Biophys. Acta 1247, 1-11 

  7. Cosnier, S., C. Mousty, J. De Melo, A. Lepellec, A. Novoa, B. Polyak, and R. S. Marks (2004), Organic Phase PPO Biosensors Prepared by Multilayer Deposition of Enzyme and Alginate through Avidin-biotin Interactions, Electroanalysis 16, 2022-2029 

  8. Varma, S. and B. Mattiasson (2005), Amperometric Biosensor for the Detection of Hydrogen Peroxide using Catalase Modified Electrodes in Polyacrylamide, J. Biotechnol. 119, 172-180 

  9. Mulchandani, A. and S. Pan (1999), Ferrocene-conjugated m-Phenylendiamina Conducting Polymer-incorporated Peroxidase Biosensors, Anal. Biochem. 267, 141-147 

  10. Andreescu, S., T. Noguer, V. Magearu, and J. L. Marty (2002), Screen-printed Electrode Based on AChE for the Detection of Pesticides in Presence of Organic Solvents, Talanta 57, 169-176 

  11. Abad, J. M., F. Pariente, L. Hernandez, H. D. Abrua, and E. Lorenzo (1998), Determination of Organophosphorus and Carbamate Pesticides Using A Piezoelectric Biosensor, Anal. Chem. 70, 2848-2855 

  12. Fennouh, S., V. Casimiri, and C. Burstein (1997), Increased Paraoxon Detection Solvents Using Acetylcholinesterase Inactivation Measured With A Choline Oxidase Biosensor, Biosens. Bioelectron. 12, 97-104 

  13. Rehak, M., M. Snejdarkova, and T. Hianik (1997), Acetylcholine Minisensor Based on Metal-supported Lipid Bilayers for Determination of Environmental Pollutants, Electroanalysis 9, 1072-1077 

  14. Choi, J. W., J. Min, W. H. Lee (1997), Signal Analysis of Fiber-optic Biosensor for the Detection of Organophosphorus Compounds in the Contaminated Water, Korean J. of Chem. Eng. 14, 101-108 

  15. Trettnak, W., F. Reininger, E. Zinterl, and O. S. Wolfbeis (1993), Fiber-optic Remote Detection of Pesticides and Related Inhibitors of the Enzyme Acetylcholinesterase, Sensors and Actuators B 11, 87-90 

  16. Choi, J. W., J. Min, J. W. Jung, H. W. Rhee, and W. H. Lee (1998), Fiber-optic Biosensor for the Detection of Organophosphorus Compounds using AChE-immobilized Viologen LB Films, Thin Solid Films 327-329, 676-680 

  17. Choi, J. W., Y. K. Kim, I. H. Lee, J. Min, and W. H. Lee (2001), Optical Organophosphorus Biosensor Consisting of Acetylcholinesterase/Viologen Hetero Langmuir-Blodgett Film, Biosens. Bioelectron. 16, 937-943 

  18. Choi, J. W., Y. K. Kim, S. Y. Song, I. H. Lee, and W. H. Lee (2003), Optical Biosensor Consisting of Glutathione-S-transferase for Detection of Captan, Biosens. Bioelectron. 18, 1461-1466 

  19. Choi, J. W., Y. K. Kim, B. K. Oh, S. Y. Song, and W. H. Lee (2003), Optical Biosensor for Simultaneous Detection of Captan and Organophosphorus Compounds, Biosens. Bioelectron. 18, 591-597 

  20. Federal Register (1989), Drinking Water, National Primary Drinking Water Regulations; Total Coliform; Total Coliforms (Including Fecal Coliforms and E. coli); Final Rules. Fed. Reg. 54. 27544-27568 

  21. APHA, AWWA, and WPCF (1992), Standard Methods for the Examination of Water and Wastewater, 18th ed., A.E. Greeberg, L.S. Clesceri, and A.D. Eaton, Eds., Am. Public health Assoc., Washington DC 

  22. Bordner, R., J. Winter, and P. Scarpino (Eds). Microbial Methods for Monitoring the Environment: Water and Eastes, EPA-600/8-78-017, Environmental Monitoring and Support Laboratory, US Enivron, Protect. Agency, Cincinnati 

  23. Edberg, S., M. J. Allen, D. B. Smith, and National Collavorative Study (1988), National Field Evaluation of a Defined Substrate Method for the Simultaneous Enumeration of Total Coliforms and Escherichia coli from Drinking Water: Comparison with the Standard Multiple Tube Fermentation Method, Appl. Environ. Microbiol. 54, 1595-1601 

  24. Min, J. and A. Baeumner (2002), Highly Sensitive and Specific Detection of Viable Escherichia coli in Drinking Water, Analytical Biochemistry 303, 186-193 

  25. Hu, Y., Q. Zhang, and J. C. Meitzer (1999), Rapid and Sensitive Detection of Esherichia coli O157:H7 in Bovine Faeces by a Multiplex PCR, J. Appl. Microbiol. 87, 867-876 

  26. Boom, R., C. J. A. Sol, M. M. M. Salimans, C. L. Jansen, P. M. E. Wertheim-van Dillen, and J. Van der Noordaa (1990), Rapid and Simple Method for Purification of Nucleic Acids, Journal of Clinical Microbiology 28, 495-503 

  27. Nathaniel, C. C., S. Stelick, and C. A. Batt (2003), Nucleic Acid Purification Using Microfabricatied Silicon Structures, Biosens. Bioelecron. 19, 59-66 

  28. Malgorzata, W. A., S. D. Llopis, A. Wheatley, R. L. McCarley, and S. A. Soper (2006), Purification and Preconcentration of Genomic DNA from Whole Lysates Using Photoactivated Polycarbonate (PPC) Microfluidic Chips, Nucleic Acids Research 34, e74-e79 

  29. Gusev, Y., J. Sparkowski, A. Raghunathan, H. Ferguson, Jr., J. Montano, N. Bogdan, B. Schweitzer, S. Wiltshire, S. F. Kingsmore, W. Maltzman, and V. Wheeler (2003), Rolling Circle Amplification -A New Approach to Increase Sensitivity for Immunohistochemistry and Flow Cytometry, American Journal of Pathology 159, 63-69 

  30. Cao, Y. C., R. Jin, C. S. Thaxton, and C. A. Mirkin (2005), A Two-color-change, Nanoparticle-based Method for DNA Detection, Talanta 67, 449-455 

  31. Williams, J. M., M. Trope, D. J. Caplan, and D. C. Shugars (2006), Detection and Quantitation of E. faecalis by Real-time PCR (qPCR), Reverse Transcription-PCR (RT-PCR), and Cultivation During Endodontic Treatment, Journal of Endodontics 32, 715-721 

  32. Panelli, S., G. Damiani, L. Espen, G. Micheli, and V. Sgaramella (2006), Towards the Analysis of The Genomes of Single Cells: Further Characterisation of the Multiple Displacement Amplification, Gene 372, 1-7 

  33. Yang, J. M., J. Bell, Y. Huang, M. Tirado, D. Thomas, A. H. Forster, R. W. Haigis, P. D. Swanson, B. R. Wallace, B. Martinsons, and M. Krihak (2002), An Integrated, Stacked Microlaboratory for Biological Agent Detection with DNA and Immunoassays, Biosens. Bioelectron. 17, 605-618 

  34. Maylin, S., M. Martinot-Peignoux, N. Boyer, M. P. Ripault, C. Feray, M. H. Nicolas-Chanoine, and P. Marcellin (2006), 595 Evidence for Eradication of HCV, Assessed with Transcription Mediated Amplification (TMA), in Chronic Hepatitis C Patients with Sustained Virological Response to Therapy, Journal of Hepatology 44, S221 

  35. Baeumner, A. J., R. N. Cohen, V. Miksic, and J. Min (2003), RNA Biosensor for the Rapid Detection of Viable Escherichia coli in Drinking Water, Biosens. Bioelectron. 18, 405-413 

  36. Jeong, S. C., I. S. Pack, E. Y. Cho, E. S. Youk, S. Park, W. K. Yoon, C. G. Kim, Y. D. Choi, J. K. Kim, and H. M. Kim (2007), Molecular Analysis and Quantitative Detection of a Transgenic Rice Line Expressing a Bifunctional Fusion TPSP, Food Control 18, 1434-1442 

  37. Pen, J. (2007), Voltametric Detection of DNA Hybridization Using a Non-competitive Enzyme Linked Assay, Biochem. Eng. J. 35, 183-190 

  38. Edwards K. A. and A. J. Baeumner (2006), Analysis of Liposomes, Talanta 68, 1432-1441 

  39. Stillitano, F., A. Mugelli, E. Cerbai, and S. Vanucci (2007), Quantification of Midkine Gene Expression in Patella caerulea (Mollusca, Gastropoda) Exposed to Cadmium Estuarine, Coastal and Shelf Science 75, 120-124 

  40. Dyer, J., D. M. Chisenhall, and C. N. Mores (2007), A Multiplexed TaqMan Assay for the Detection of Arthropod-borne Flaviviruses, Journal of Virological Methods 145, 9-13 

  41. Fodes-Papp, Z., B. Angerer, W. Ankenbauer, and R. Rigler (2001), Fluorescent High-density Labeling of DNA: Error-Free Substitution for a Normal Nucleotide, J. Biotechnol. 86, 237-253 

  42. Chen, W. Y., W. P. Hu, Y. D. Su, A. Taylor, S. Jiang, and G. L. Chang (2007), A Multispot DNA Chip Fabricated with Mixed ssDNA/oligo (ethylene glycol) Self-assembled Monolayers for Detecting the Effect of Secondary Structures on Hybridization by SPR Imaging, Sensors and Actuator B 125, 607-614 

  43. Jin, Y., W. Lu, J. Hu, X. Yao, and J. Li (2007), Site-specific DNA Cleavage of EcoRI Endounclease Probed by Electrochemical Analysis Using Ferrocene Capped Gold Nanoparticles as Reporter, Electrochemistry Communications 9, 1086-1090 

  44. Kerman, K., Y. Morita, Y. Takamura, and E. Tamiya (2003), Label-free Electrochemical Detection of DNA Hybridization on Gold Electrode, Electrochemistry Communications 5, 887-891 

  45. Daniel, S., T. P. Raoa, K. S. Raob, S. U. Rani, G. R. K. Naidu, H. Y. Lee, and T. Kawai (2007), A Review of DNA Functionalized/grafted Carbon Nanotubes and Their Characterization, Sensors and Actuators B 112, 672-682 

  46. Andreu, A., J. W. Merkert, L. A. Lecaros, B. L. Broglin, J. T. Brazell, and M. El-Kouedi (2006), Detection of DNA Oligonucleotides on Nanowire Array Electrodes Using Chronocoulometry, Sensors and Actuators B 114, 1116-1120 

  47. Rhee, M. and M. A. Burns (2007), Nanopore Sequencing Technology: Research Trends and Applications, Trends in biotechnology 24, 580-586 

  48. Im, H., X. J. Huang, B. Gu, and Y. K. Choi (2007), A Dielectric-modulate, Nature Nanotechnology 2, 430-434 

  49. Kim, Y. R., J. Min, I. H. Lee, S. Kim, A. G. Kim, K. Kim, K. Namkoong, and C. Ko (2007), Nanopore Sensor for Fast Label-free Detection of Short Double-stranded DNAs, Biosens. Bioelectron. 22, 2926-2931 

  50. Carrascosa, L. G. (2006), Nanomechanical Biosensor: A New Sensing Tool, Trends in Analytical Chemistry: TrAC 25, 196-206 

  51. Ha, K. S. and J. S. Yuk, (2004), Nano-bio Technology and Protein Chips, Trends in Medical Research 11, 5-14 

  52. Blaws, A. S. and W. M. Reichert (1998), Protein Patterning, Biomaterials 19, 595-609 

  53. MacBeath, G. and S. L. Schreiberet (2000), Printing Proteins as Microarrays for High-Throughput Function Determination, Science 289, 1760-1763 

  54. Zhu, H., M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R. A. Dean, W. Gerstein, and M. Snyder (2001), Global Analysis of Protein Activities Using Proteome Chips, Science 293, 2101-2105 

  55. Kukar, T., S. Eckenrode, Y. Gu, W. Lian, M. Megginson, J. X. She, and D. Wu (2002), Protein Microarrays to Detect Protein-protein Interactions Using Red and Green Fluorescent Proteins, Anal. Biochem. 306, 50-54 

  56. Mitchell, P. (2002), A Perspective on Protein Microarrays, Nat. Biotechnol. 20, 225-229 

  57. Zhu, H. and M. Snyder (2003), Protein Chip Technology, Curr. Opin. Chem. Biol. 7, 55-63 

  58. Kim, Y. K., B. K. Oh, and J. W. Choi (2004), Prospective of Industrial Chemistry 7, 1-8 

  59. Service, R. F. (2003), Protein Arrays Step Out of DNA's Shadow, Science 289, 1673-1675 

  60. Feng, H. P. (2000), A Protein Microarray, Nature Structure Biology 7, 829-837 

  61. Synder, M. and S. Field (2003), Protein Analysis on A Proteomic Scale, Nature 422, 208-215 

  62. Kodadek, T. (2001), Protein Microarrays: Prospects and Problems, Chem. Biol. 8, 105-116 

  63. Yuk, J. S., S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha (2003), Characterization of Surface Plasmon Resonance Wavelength by Changes of Protein Concentration on Protein Chips, Sensor and Actuator B 422, 161-163 

  64. Yuk, J. S. and K. S. Ha (2004), Analysis of Immunoreactions on Protein Arrays by Using Wavelength-Interrogation-Based Surface Plasmon Resonance Sensors, J. Korean Phys. Soc. 45, 1104-1108 

  65. Warren, E. N., P. J. Elms, C. E. Parker, and C. H. Borchers (2004), Development of a Protein Chip: A MS-Based Method for Quantitation of Protein Expression and Modification Levels Using an Immunoaffinity Approach, Anal. Chem. 76, 4082-4092 

  66. Ferretti, S. S., D. A. Russel, K. E. Sapsford, and D. J. S. Richardson (2000), Self-assembled Monolayers: A Versatile Tool for the Formulation of Bio-surfaces, Trends. Anal. Chem. 19, 530-540 

  67. Oh, B. K., Y. K. Kim, W. Lee, Y. M. Bae, W. H. Lee, and J. W. Choi (2003), Immunosensor for Detection of Legionella pneumophila using Surface Plasmon Resonance, Biosens. Bioelectron. 18, 605-611 

  68. Ruiz-Taylor, L. A., T. L. Martin, F. G. Zaugg, K. Witte, P. Indermuhle, S. Nock, and P. Wagner (2001), Monolayers of Derivatized Poly(L-lysine)-grafted Poly(ethylene glycol) on Metal Oxides as a Class of Biomolecular Interfaces, Proc. Natl. Acad. Sci. 98, 852-857 

  69. Sigal, G. B., C. Bamdad, A. Barberis, J. Strominger, and G. M. Whitesides (1996), A Self-Assembled Monolayer for the Binding and Study of Histidine-Tagged Proteins by Surface Plasmon Resonance, Anal. Chem. 68, 490-497 

  70. Salaita, K., Y. Wang, and C. A. Mirkin (2007), Applications of Dip-pen Nanolithography, Nature Nanotechnology 2, 145-155 

  71. Chen C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber (1997), Geometric Control of Cell Life and Death, Science 276, 1425-1428 

  72. Kim, H. S., Y. M. Bae, Y. K. Kim, B. K. Oh, and J. W. Choi (2006), Antibody Layer Fabrication for Protein Chip to Detect E. coli O157:H7 Using Microcontact Printing Technique, J. Microbiol. Biotechnol. 16, 141-144 

  73. Jiang, X. Y., R. Ferrigno, M. Mrksich, and G. M. Whitesides (2003), Electrochemical Desorption of Self-assembled Monolayers Noninvasively Releases Patterned Cells from Geometrical Confinements, J. Am. Chem. Soc. 125, 2366-2367 

  74. Lee, J. H., C. H. Youn, B. . Kim, and M. B. Gu (2007), An Oxidative Stress-specific Bacterial Cell Array Chip for Toxicity Analysis, Biosens. Bioelectron. 22, 2223-2229 

  75. Choi, J. W., Y. S. Nam, and M. Fujihira (2004), Nanoscale Fabrication of Biomolecular Layer and Its Application to Biodevices, Biotechnol. Bioprocess Eng. 9, 76-85 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로