$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

프리스트레스트 띠장을 적용한 흙막이 시스템의 유한요소해석
Finite Element Analysis of Earth Retention System with Prestressed Wales 원문보기

韓國地盤工學會論文集 = Journal of the Korean geotechnical society, v.24 no.3, 2008년, pp.25 - 34  

박종식 (Hanwha Research Institute of Technology) ,  김성규 (Dept. of Civil, Architect. Envir. System Engrg., Sungkyunkwan Univ.) ,  주용선 (Dept. of Civil, Architect. Envir. System Engrg., Sungkyunkwan Univ.) ,  김낙경 (Dept. of Civil Architectual and Envir. System Engrg., Sunkyunkwan Univ.)

초록
AI-Helper 아이콘AI-Helper

프리스트레스트 띠장을 적용한 새로운 흙막이 시스템에 대한 유한요소 해석이 수행되었다. 본 연구에서는 프리스트레스트 띠장을 적용한 흙막이 시스템의 거동을 규명하기 위하여 3 차원 유한요소 모델이 적용되었다. 새로운 흙막이 시스템에 대한 유한요소 모델링 절차와 방법이 제시되었다. 지반, 벽체, 버팀보 및 프리스트레스트 띠장 시스템을 구성하고 있는 띠장, 받침대, 강선에 대한 모델링과 지반-벽체 그리고 벽체-띠장 간의 접촉면 모델링이 제시되었다. 벽체 횡방향 변위, 버팀보 축력, 프리스트레스트 띠장 시스템 부재인 띠장과 받침대 축력에 대한 유한요소 해석결과가 현장 계측결과와 비교 검증되었다. 검증된 3 차원 유한요소 모델을 이용하여 강선 인장력 변화에 따른 새로운 프리스트레스트 띠장의 휨모멘트와 변형 거동이 규명되었으며 이에 따른 흙막이 벽체 배면에서의 토압 거동이 규명되었다.

Abstract AI-Helper 아이콘AI-Helper

A finite element analysis was performed for new earth retention system with prestressed wales. A 3D finite element model was adopted in this study to investigate the behavior of the earth retention system with prestressed wales. A procedure of the 3D finite element modeling of this earth retention s...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • (2) Based on the numerical results, the lateral deflection and the bending moment of the wale, and the distribution of lateral earth pressxire acting on the wall along the prestressed wales were investigated. It was recognized that the behavior of lateral wale deflection had a relationship with the lateral earth pressure distribution on the wall.
  • A 3D finite element dialysis was performed to investigate the behavior of the new earth retention system with prestressed wales. Details of the finite element modeling of the earth retention system with prestressed wales were presented.
  • The strut was modeled with two-noded spring elements. In the modeling of the prestressed wale system consisting of wale, support leg, and steel wires, the wale and support leg were modeled with two-noded beam elements. The steel wires were modeled with two-noded truss elements.
  • calculated. The calibration process consisted of finding the model for wall, strut, and members of the prestressed wale system that led to the best match between the measured and calculated wall deflection. The cast-in-place (CIP) wall was modeled and replaced with rectangular type brick element with equivalent stiffness (AE and El).
  • The new earth retention system with prestressed wales in excavations fbr buildings, water lines, bridge piers, subway structures performed successfully. There have been studies on the new earth retention system with prestressed wales by Han et al.
  • 5% errors. The numerical error was due to simplifications such as idealization of construction activities, unreal numerical parameters, and excavation geometry.
  • Details of the finite element modeling of this earth retention system were presented. The numerical predictions of the lateral wall deflection, and axial loads of the wale, support leg, and strut were evaluated and compared with the field measurements.
  • The modeling of soil, wall, strut, and prestressed wale system members, and the interface modeling of soil-wall and wall-wale were presented in this paper. The nximerical predictions of lateral wall deflection, and axial load on the members of prestressed wale systems and struts were evaluated compared with the measured data from field monitoring. In order to investigate the behavior of the new earth retention system on the effect of prestress load conditions of steel wires, a series of finite element analyses were performed using the proposed 3D finite element model.
  • method. The prestress load on the new wale system was examined in the finite element analysis to evaluate the influence on the lateral deflection of the wall and wales, and the lateral earth pressure distribution on the wall.
  • Here, ψ values used in this analysis were referenced from the studies by Bolton (1986), Jewell (1989), and Perkins and Madson (2000). The soil and rock material properties were calculated and based on the results of the field tests.

대상 데이터

  • building in Anyang area. The excavation was 48 meters wide, 44 meters long, and 11.9 meters deep. The old houses and stores were located in the vicinity of the site.
  • A new wale system is a wale prestressed by tensioning steel wires. The newly prestressed wale system consists of wales, H-beam support legs, steel wires, and hydraulic jacks, as shown in Fig. 1. The newly prestressed wale system provides a highly flexural resistance against a bending by lateral earth pressures.

이론/모형

  • A numerical analysis of the new earth retention system with prestressed wales was performed using the finite element method. A 3D finite element model was adopted to investigate the behavior of the wall and newly prestressed wales in excavation.
  • The interface of wall-soil and wall-wale was simulated by the Coulomb friction model provided in ABAQUS. As can be seen in Fig.
  • The sensitivity analysis was performed fbr the new earth retention system with prestressed wales by the finite element method. The prestress load on the new wale system was examined in the finite element analysis to evaluate the influence on the lateral deflection of the wall and wales, and the lateral earth pressure distribution on the wall.
  • elements. The soil and rock were assumed to be elasto-plastic material obeying the Drucker-Prager failure criterion available in ABAQUS (ABAQUS 2004), a commercial FE program. The strength parameters of soil deposits are confuted by using the Mohr-Coulomb strength parameters of friction angle © and cohesion c in con­ junction with the Drucker-Prager model parameters of /3 and d (ABAQUS 2004).
  • The strength parameters of soil deposits are confuted by using the Mohr-Coulomb strength parameters of friction angle © and cohesion c in con­ junction with the Drucker-Prager model parameters of /3 and d (ABAQUS 2004). The strength parameters of the rock mass to perform the finite element analysis were calculated by using the Hoek and Brown criterion (Hoek and Brown 1988). The stiffiiess of the soil and rock was calculated based on an empirical relationship reported by Janbu (1963).
본문요약 정보가 도움이 되었나요?

참고문헌 (18)

  1. ABAQUS User's and Theory Manuals (2004), Version 6.5, Hibbit, Karlson & Sorensen Inc., Pawtucket, R.I. 

  2. Bolton, M. D. (1986), 'The strength and dilatancy of sands', Geotechnique, Vol.36, No.1, pp.65-78 

  3. Briaud, J.-L., and Lim, Y. (1999), 'Tieback walls in sand: numerical simulation and design implications', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.125, No.2, pp.101-110 

  4. Han, M. Y., Kim, M. Y., Kim, S. B., Min, B. C., and Lee, J. S. (2003a), 'Design of innovative prestressed scaffolding system', Proc. KSCE Annual Conf. 2003, KSCE, pp.408-413 

  5. Han, M. Y., Kim, M. Y., Kim, S. B., and Park, D. H. (2003b), 'Theoretical study on flexural stiffness of innovative prestressed wale', Proc. KSCE Annual Conf. 2003, KSCE, pp.3754-3759 

  6. Hoek, E., and Brown, E. T. (1988), 'The Hoek-Brown failure criterion - a 1988 update', In Rock engineering for underground excavations, Proc., $15^{th}$ Canadian rock mech. symp., (ed. J.C. Curran), 31-38. Toronto: Dept. Civ. Engineering, Univ. of Toronto 

  7. Janbu, N. (1963), 'Soil compressibility as determined by oedometer and triaxial test', Proc. Eur. Conf. on Soil Mech. and Found. Engrg., Vol.1, pp.19-25 

  8. Jewell, R. A. (1989), 'Direct shear tests on sand', Geotechnique, Vol.39, No.2, pp.309-322 

  9. Kim, N. K., Park, J. S., Han, M. Y., Kim, M. Y., and Kim, S. B. (2004), Development of innovative prestressed support earth retention system', Journal of the KGS, Vol.20, No.2, pp.107-113 

  10. Kim, M. Y., Lee, J. S., Han, M. Y., Kim, S. B., and Kim, N. K. (2005a), 'A Multi-noded Cable Element Considering Sliding Effects', Journal of the KSSC, Vol.17, No.4, pp.449-457 

  11. Kim, N. K., Park, J. S., Jang, H. J., Han, M. Y., Kim, M. Y., and Kim, S. B. (2005b), 'Performance of innovative prestressed support earth retention system in urban excavation', J. KGS, Vol.21, No.2, pp.1-10 

  12. Kim, N. K, Park, J. S., and Jang, H. J. (2005c), 'Stability of Innovative Prestressed wale System Applied in Urban Excavation', Journal of the KSMI, Vol.9, No.2, pp.225-235 

  13. Kim, S. B., Han, M. Y., Kim, M. Y., Kim, N. K., and Ji, T. S. (2005d), 'Analysis and design of wale in innovative prestressed support(IPS) system', Journal of the Computational Structural Engineering Institute of Korea, Vol.18, No.1, pp.79-91 

  14. Park, J. S., Kim, J. W., Kim, N. K., Lee, Y. S., and Han, M. Y. (2003a), 'IPS Earth Retention System I - Basic Principles', Proceedings of the KSCE Annual Conference 2003, KSCE, pp.3775-3779 

  15. Park, J.S., Kim, J.W., Kim, N.K., Lee, Y.S. and Han, M.Y. (2003b), 'IPS Earth Retention System II - Case Histories', Proceedings of the KSCE Annual Conference 2003, KSCE, pp.3748-3753 

  16. Park, J. S., Kim, N. K., Han, M. Y., and Kim, J. S. (2004), 'IPS Earth Retention System', Proc. KGS Spring Conf. 2004, KGS, pp.293-300 

  17. Perkins, S. W., and Madson, C. R. (2000), 'Bearing capacity of shallow foundation on sand: a relative density approach', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.126, No.6, pp.521-530 

  18. Yoo, C. (2001), 'Behavior of braced and anchored walls in soils overlying rock', Journal of the Geotechnical and Geoenvironmental Engineering, ASCE, Vol.127, No.3, pp.225-233 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로