본 연구에서는 초등학교 4, 5, 6학년 20명을 대상으로 분수의 덧셈과 뺄셈에 대하여 아동이 어떻게 이해하고 있는지 알아보고, 그것이 분수의 덧셈과 뺄셈 문장제 해결에 어떤 영향을 주는지 알아보았다. 연구 결과 많은 아동들이 분수의 덧셈을 합병의 상황으로, 분수의 뺄셈을 제거의 상황으로 이해하고 있었으며, 대부분 동분모 분수의 덧셈, 뺄셈과 이분모 분수의 덧셈, 뺄셈을 동일한 의미로 이해하고 있었다. 몇몇 아동들은 분수의 덧셈과 뺄셈을 특정 상황과 연결 지어 이해하고 있기 보다는 연산의 계산 절차를 연산의 의미로 이해하고 있었는데, 동분모 분수의 덧셈, 뺄셈보다 이분모 분수의 덧셈, 뺄셈을 계산절차로만 이해하고 있는 아동들이 상대적으로 많았다. 분수의 덧셈과 뺄셈에 대한 아동의 이해가 문장제 해결에 어떤 영향을 주는지 조사한 결과 분수의 덧셈에 대하여 아동이 어떤 의미로 이해하고 있느냐는 분수의 덧셈 문장제 해결에 큰 영향을 주지 않았다. 또한 분수의 덧셈에 대하여 동일한 이해 범주에 포함된 아동들 간에도 문장제의 해결 방법에 공통된 특성은 발견되지 않았다. 반면, 분수의 뺄셈에서는 많은 아동이 분수의 뺄셈에 대하여 자신이 지니고 있는 의미론적 구조에 기초하여 문제를 해결하려는 경향을 보였으며, 동일한 이해 범주에 포함된 아동들 간에도 분수의 뺄셈 문장제 해결 방법에 공통된 특성이 발견되었다. 특히 분수의 덧셈과 뺄셈을 특정 상황과 연관 지어 이해하고 있기 보다는 분수의 덧셈과 뺄셈의 계산 절차를 각 연산의 의미로 이해하고 있었던 아동들은 다른 아동들에 비해 문장제 해결 능력이 떨어졌다.
본 연구에서는 초등학교 4, 5, 6학년 20명을 대상으로 분수의 덧셈과 뺄셈에 대하여 아동이 어떻게 이해하고 있는지 알아보고, 그것이 분수의 덧셈과 뺄셈 문장제 해결에 어떤 영향을 주는지 알아보았다. 연구 결과 많은 아동들이 분수의 덧셈을 합병의 상황으로, 분수의 뺄셈을 제거의 상황으로 이해하고 있었으며, 대부분 동분모 분수의 덧셈, 뺄셈과 이분모 분수의 덧셈, 뺄셈을 동일한 의미로 이해하고 있었다. 몇몇 아동들은 분수의 덧셈과 뺄셈을 특정 상황과 연결 지어 이해하고 있기 보다는 연산의 계산 절차를 연산의 의미로 이해하고 있었는데, 동분모 분수의 덧셈, 뺄셈보다 이분모 분수의 덧셈, 뺄셈을 계산절차로만 이해하고 있는 아동들이 상대적으로 많았다. 분수의 덧셈과 뺄셈에 대한 아동의 이해가 문장제 해결에 어떤 영향을 주는지 조사한 결과 분수의 덧셈에 대하여 아동이 어떤 의미로 이해하고 있느냐는 분수의 덧셈 문장제 해결에 큰 영향을 주지 않았다. 또한 분수의 덧셈에 대하여 동일한 이해 범주에 포함된 아동들 간에도 문장제의 해결 방법에 공통된 특성은 발견되지 않았다. 반면, 분수의 뺄셈에서는 많은 아동이 분수의 뺄셈에 대하여 자신이 지니고 있는 의미론적 구조에 기초하여 문제를 해결하려는 경향을 보였으며, 동일한 이해 범주에 포함된 아동들 간에도 분수의 뺄셈 문장제 해결 방법에 공통된 특성이 발견되었다. 특히 분수의 덧셈과 뺄셈을 특정 상황과 연관 지어 이해하고 있기 보다는 분수의 덧셈과 뺄셈의 계산 절차를 각 연산의 의미로 이해하고 있었던 아동들은 다른 아동들에 비해 문장제 해결 능력이 떨어졌다.
The purpose of the study was to investigate how children understand addition and subtraction of fractions and how their understanding influences the solutions of fractional word problems. Twenty students from 4th to 6th grades were involved in the study. Children's understanding of operations with f...
The purpose of the study was to investigate how children understand addition and subtraction of fractions and how their understanding influences the solutions of fractional word problems. Twenty students from 4th to 6th grades were involved in the study. Children's understanding of operations with fractions was categorized into "joining", "combine" and "computational procedures (of fraction addition)" for additions, "taking away", "comparison" and "computational procedures (of fraction subtraction)" for subtractions. Most children understood additions as combining two distinct sets and subtractions as removing a subset from a given set. In addition, whether fractions had common denominators or not did not affect how they interpret operations with fractions. Some children understood the meanings for addition and subtraction of fractions as computational procedures of each operation without associating these operations with the particular situations (e.g. joining, taking away). More children understood addition and subtraction of fractions as a computational procedure when two fractions had different denominators. In case of addition, children's semantic structure of fractional addition did not influence how they solve the word problems. Furthermore, we could not find any common features among children with the same understanding of fractional addition while solving the fractional word problems. In case of subtraction, on the other hand, most children revealed a tendency to solve the word problems based on their semantic structure of the fractional subtraction. Children with the same understanding of fractional subtraction showed some commonalities while solving word problems in comparison to solving word problems involving addition of fractions. Particularly, some children who understood the meaning for addition and subtraction of fractions as computational procedures of each operation could not successfully solve the word problems with fractions compared to other children.
The purpose of the study was to investigate how children understand addition and subtraction of fractions and how their understanding influences the solutions of fractional word problems. Twenty students from 4th to 6th grades were involved in the study. Children's understanding of operations with fractions was categorized into "joining", "combine" and "computational procedures (of fraction addition)" for additions, "taking away", "comparison" and "computational procedures (of fraction subtraction)" for subtractions. Most children understood additions as combining two distinct sets and subtractions as removing a subset from a given set. In addition, whether fractions had common denominators or not did not affect how they interpret operations with fractions. Some children understood the meanings for addition and subtraction of fractions as computational procedures of each operation without associating these operations with the particular situations (e.g. joining, taking away). More children understood addition and subtraction of fractions as a computational procedure when two fractions had different denominators. In case of addition, children's semantic structure of fractional addition did not influence how they solve the word problems. Furthermore, we could not find any common features among children with the same understanding of fractional addition while solving the fractional word problems. In case of subtraction, on the other hand, most children revealed a tendency to solve the word problems based on their semantic structure of the fractional subtraction. Children with the same understanding of fractional subtraction showed some commonalities while solving word problems in comparison to solving word problems involving addition of fractions. Particularly, some children who understood the meaning for addition and subtraction of fractions as computational procedures of each operation could not successfully solve the word problems with fractions compared to other children.
Keyword
※ AI-Helper는 부적절한 답변을 할 수 있습니다.