$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

무경운 답에서 토양 물리성과 미생물 생체량 탄소 함량에 미치는 녹비작물 시용효과
Effects of Rice Straw Application and Green Manuring on Selected Soil Physical Properties and Microbial Biomass Carbon in No-Till Paddy Field 원문보기

韓國土壤肥料學會誌 = Korean journal of soil science & fertilizer, v.43 no.1, 2010년, pp.105 - 112  

이영한 (경상남도농업기술원) ,  안병구 (전라북도농업기술원) ,  이진호 (전북대학교 농업생명과학대학 생물환경화학과)

초록
AI-Helper 아이콘AI-Helper

벼 유기농업은 한국에서 빠르게 확산되고 있다. 유기재배에서 벼 생육은 토양 물리적 특성과 토양 미생물의 기능에 크게 의존한다. 본 연구는 무경운 답에서 유기농업을 위하여 토양 물리성과 미생물 생체량에 미치는 녹비작물의 효과를 검토하였다. 시험구는 무경운, 무경운+볏짚, 무경운+호밀, 무경운+자운영 그리고 경운구를 3반복으로 죽곡통에서 2005년 5월에서 2006년 10월까지 수행하였다. 경운구는 2005년과 2006년 모두 토양 가밀도가 가장 높은 반면 공극률은 가장 낮았다. 무경운+호밀 처리구는 공극률이 가장 높았으며 무경운 처리구의 표토 관입저항은 경운구 보다 낮았다. 담수 전 2005년과 2006년 토양 미생물 생체량 탄소 함량은 무경운+자운영 처리구가 477 mg $kg^{-1}$ 및485 mg $kg^{-1}$으로 가장 높았고 무경운+호밀 처리구는 413 mg $kg^{-1}$ 및 484 mg $kg^{-1}$였으며 경운 처리구는 363 mg $kg^{-1}$ 및 445 mg $kg^{-1}$을 나타냈다. 시기적으로 토양 미생물 생체량 탄소 함량은 유수형성기에 낮아지는 경향이었다. 연구결과 녹비작물을 시용한 무경운 재배기술은 경운에 비해 토양 공극률과 토양 미생물 생체량 탄소 함량을 크게 개선하였다.

Abstract AI-Helper 아이콘AI-Helper

Applications of plant residues and green manures generally improve the properties of soil under conventional farming system. Therefore, we investigated the improvement of selected soil physical properties, bulk density, porosity, and water content, soil penetration resistance, and soil microbial bio...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 5) no-tillage without rice straw or green manure crop treatment (NTNT), and the size of each experimental plot was 200 m2 (20 m × 10 m), and all experiments were conducted by a randomized complete block design with three replications.
  • 0 cm2 of conical point in area, which draws a graph of the resistance to penetration versus depth to a depth of 40 cm. The measurement was conducted after harvesting rice in paddy field.
  • Therefore, the objective of thisstudy was to investigate impacts of rice straw and green manure crops, rye, and Chinese milk vetch, applications on selected soil properties, bulk density, porosity, and water content, soil penetration resistance, and microbial biomass C content in paddy field under different tillage systems.

대상 데이터

  • Experimental site description This study was conducted at the rice paddy fields in Sacheon, Gyeongsangnam-do, Korea, from May 2005 through October 2006. The experimental fields were located at 35°06′33″N latitude and 128°07′07″E longitude.
  • 5℃ and 1,394 mm, respectively, during the experimental period. Soil in the study sites was Juggog series (silty clay loam: 12.8% sand, 56.0% silt and 31.2% clay) that classified fine-silty mixed, mesic Fluvaquentic Eutrudepts. Selected soil chemical properties in the experimental sites ranged 5.
  • The samples were dried in an air-forced drying oven at 70℃ for 72 hrs and weighed. The dried plant samples were ground using a grinding mill (RM100 Mortar Grinder, Retsch, Germany). Selected nutritional chemicals were determined using methods proposed by Rural Development Administration (RDA), Korea (2000).
  • The experimental fields were located at 35°06′33″N latitude and 128°07′07″E longitude.

데이터처리

  • The results of each parameter in all five applications were subjected to analysis of variance, and treatment means were compared by Duncan’s multiple range test (DMRT) at the 5% probability level.

이론/모형

  • Determination of selected properties of soil Bulk density was determined by using a soil core method (Blake and Hartge, 1986a). Three replications of the core samples were taken from each plot between 5 and 10 cm depths.
본문요약 정보가 도움이 되었나요?

참고문헌 (28)

  1. Blake, G.R., and K.H. Hartage. 1986a. Bulk density. P. 363-375. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA, and SSSA, Madison WI. 

  2. Blake, G.R., and K.H. Hartage. 1986a. Bulk density. P. 363-375. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA, and SSSA, Madison WI. 

  3. Blevins, R.L., G.W. Thomas, M.S. Mith, W.W. Frye, and P.L. Conelius. 1983. Changes in soil properties after 10 years no-tilled and conventionally tilled corn. Soil Till. Res. 3:135?146. 

  4. Busscher, W.J., P.J. Bauer, C.R. Camp, and R.E. Sojka. 1997. Correction of cone index for soil water content differences in a coastal plain soil. Soil Till. Res. 43:205-217. 

  5. Cannell, R.Q., F.B. Ellis, D.G. Christian, J.P. Gram, and J.T. Douglas. 1980. The growth and yield of winter cereals after direct drilling, shallow cultivation, and ploughing on non-calvareous clay soils, 1974-8. J. Agric. Sci. Camb. 94:345-359 

  6. Cassel, D.K. 1982. Tillage effects on soil bulk density and mechanical impedance. p. 45?67. In P.W. Unger and D.M. Van Doren (ed.) Predicting tillage effects on soil physical properties and processes. ASA Spec. Publ. 44. ASA and SSSA, Madison, WI. 

  7. Costamagna, O.A., R.K. Stivers, H.M. Galloway, and S.A. Barber. 1982. Three tillage systems affect selected properties of a tilled naturally poor-drained soil. Agron. J. 74:442-446. 

  8. Crovetto, C.C.. 1998. No-till development in Chequen farm and its influence on some physical, chemical and biological parameters. J. Soil Water Conserv. 53:194-199. 

  9. Dabney, S.M., G.V. Wilson, K.C. McGregor, and G.R. Foster. 2004. History, residue, and tillage effects on erosion of loessial soil. Trans ASAE 47:767-775. 

  10. Dobermann, A. and T.H. Fairhurst. 2002. Rice straw management. Better Crop International, Special Supplement, 16:7-11. 

  11. Ellis, F.B., J.G. Elliott, F. Pollard, R.Q. Cannell, and B.Y. Barnes. 1979. Comparison of direct drilling reduce cultivation and ploughing on growth of cereals. 3. Winter wheat and spring barley on a calcareous clay. J. Agric. Sci. Camb. 93:391-401. 

  12. Follett, R.F., Peterson, G.A. 1988. Surface soil nutrient distribution as affected by wheat-fallow tillage systems. Soil Sci. Soc. Am. J. 52, 141?147. 

  13. Gantzer, C.J., and G.R. Blake. 1978. Physical characteristics of Le Sueur clay loam soil following no-till and conventional tillage. Agron. J. 70:853-857. 

  14. Juergens, L.A., D.L. Young, W.F. Schillinger, and H.R. Hinman. 2004. Economics of alternative no-till spring crop rotations in Washington's wheat-fallow region. Agron. J. 96:154-158. 

  15. Karamanos, A.J., D. Bilalis, and N. Sidiras. 2004. Effects of reduced tillage and fertilization practices on soil characteristics, plant water status, growth and yield of upland cotton. J. Agron. Crop Sci. 190:262-276. 

  16. Lampurlanes, J., and C. Cantero-Martinez. 2003. Soil bulk density and penetration resisyance under different tillage and crop management systems and their relationship with barley root growth. Agron. J. 95:526-536. 

  17. Lee, Y.H., D. Son, and Z.R. Choe. 2009. Effects of rice-winter cover crops cropping systems on the rice yield and quality in no-tillage paddy field. Korean J. Environ. Agri. 28(1): 53-58. 

  18. Mac Rae, R.Y., and G.R. Mehuys. 1985. The effect of green manuring on the physical properties of temperate area soils. Adv. Soil Sci., Vol. 3. Springer-Verlag, Inc., NY, pp71-94. 

  19. Moran, C.J., A.J. Koppi, B.W. Murphy, and A.B. McBrantney. 1988. Comparison of the macropore structure of a sandy loam surface soil horizon subjected to two tillage treatments. Soil Use Manage. 4:96-102. 

  20. Paustian, K., Collins, H.P., and Paul, E.A. 1997. Management controls in soil carbon. In: Paul, E.A., Paustian, K., Elliott, E.T., Cole, C.V. (Eds.), Soil Organic Matter in Temperate Ecosystems: Long Term Experiments in North America. CRC Press, Boca Rotan, FL, pp. 15?49. 

  21. Pidgeon, J.D., and B.D. Soane. 1977. Effects of tillage and direct drilling on soil properties during the growing season in a long-term barley mono-culture system. J. Agric. Sci. Camb. 88:431-442. 

  22. RDA. 2000. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, Rural Development Administration, Korea. 

  23. Shear, G.M., and W.W. Moschler. 1969. Continuous corn by the no-tillage and conventional tillage method: A six-year comparion. Agron. J. 61:524-526. 

  24. Smith, J.L., and E.A. Paul. 1990. The significance of soil microbial biomass estimations. In: Bollag, J.M., Stotzky, G. (Eds.), Soil Biochemistry, vol. 6. Marcel Dekker, Inc., New York, NY, pp. 357-396. 

  25. Sullivan, P. 2003. Overview of cover crops and green manures: Fundamentals of sustainable agriculture. Appropriate Technology Transfer for Rural Areas (ATTRA), the National Center for Appropriate Technology (NCAT), Fayetteville, AR. 

  26. Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 19:703-707. 

  27. Wang, W.J., C.J. Smith, and D. Chen. 2004. Predicting soil nitrogen mineralization dynamics with a modified double exponential model. Soil Sci. Soc. Am. J. 68:1256-1265. 

  28. Wright, A.L., F.M. Hons, and J.E. Matocha Jr.. 2005. Tillage impacts on microbial biomass and nitrogen dynamics of corn and cotton rotations. Appl. Soil Ecol. 29:85-92. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로