$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

MPTP 유발 파킨슨병 동물 모델에 대한 봉독약침의 신경보호 효과 및 항염증 효과
Neuroprotective and Anti-inflammatory Effects of Bee Venom Acupuncture on MPTP-induced Mouse 원문보기

大韓鍼灸學會誌= The journal of Korean Acupuncture & Moxibustion Society, v.27 no.3, 2010년, pp.105 - 116  

박원 (키즈앤맘 한의원) ,  김재규 (부산대학교 한의학전문대학원 침구학교실) ,  김종인 (경희대학교 한의과대학 침구학교실) ,  최도영 (경희대학교 한의과대학 침구학교실) ,  고형균 (경희대학교 한의과대학 침구학교실)

초록
AI-Helper 아이콘AI-Helper

목적 : 이 연구는 MPTP 유발 파킨슨병 동물 모델에서 봉독약침의 신경보호 효과 및 항염증 효과를 확인하기 위해 시행되었다. 방법 : C57BL/6 mice에 신경독소인 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)를 하루에 2시간 간격으로 MPTP-HCl(20mg/kg per dose)을 4번 복강 내 주입하여 중뇌 흑질도파민 신경세포를 파괴한 파킨슨병 동물 모델을 유발하였다. 실험군은 MPTP군, MPTP 현종 BVA군, MPTP 곡지 BVA군, MPTP 신수 BVA군의 4군으로 하였다. 마지막 MPTP 투여 2시간 후에 1차로 봉독약침을 시술하고, 그 후 48시간 간격으로 총 5차 연속 시술하였다. 봉독약침액의 농도는 0.2mg/Kg으로 하였고, 경혈은 양측 현종($GB_{39}$), 곡지($LI_{11}$), 신수($BL_{23}$)를 사용했고, 주입량은 각 경혈당 양측으로 각 $20{\mu\ell}$씩 주입하였다. 항염증작용을 알아보기 위해 TH, MAC-1, iNOS HSP70을, 세포사멸에 대한 신경세포의 보호효과를 알아보기 위해 caspase-3을 면역조직화학법을 사용하여 실시하였다. 결과 : 실험 결과 MPTP 유발 파킨슨병 동물 모델에서 현종 곡지 신수혈에 대한 봉독약침은 TH-Immunoreactivity neuron의 감소와 microglial activation을 억제하였다. 봉독약침군 모두 효과를 보였으나 그 중 현종과 신수혈에서 특히 억제작용이 컸다. MAC-1에서는 현종혈이 억제작용이 컸다. HSP70-IR neuron은 곡지에서 유의한 억제작용을 보였으나, iNOS neuron은 모든 군에서 유의한 차이를 보이지 않았다. 또한 세포사멸억제여부 실험에서 봉독약침은 모두 억제작용을 보였으나 특히 곡지자침군에서 caspase-3 발현을 유의하게 억제하였다. 결론 : 이러한 결과는 봉독약침이 MPTP 투여로 인한 중뇌 흑질의 염증에 의한 도파민 신경세포 손상을, 염증을 억제함으로써 항염 효과를 나타냄을 알 수 있으며, 신경세포를 보호하는 활성이 있음을 보여줌과 동시에 세포사멸을 억제하는 활성이 있다고 사료된다.

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Animal experiments were carried out in accordance with the National Institute of Health’s Guide for Care and Use of Laboratory Animals, and experimental procedures were approved by the Institutional Animal Care and Use Committee, Kyung Hee University. At the beginning of the experiment, the animals were randomly divided into four groups: MPTP group, MPTP GB39 BVA group, MPTP LI11 BVA group and MPTP BL23 BVA group. All mice(six per group) received an intraperitoneal(i.
  • Evaluation of the neuronal staining intensity was performed by measuring the optical density of MAC-1, iNOS, HSP70, and caspase 3-IR neurons in 10 sections from the SNpc.
  • injection and then resumed at 48 hr intervals for a total of 5 times until the mice were sacrificed, 10 days after the last MPTP injection. For this procedure, the mice in the MPTP+BVA groups were immobilized, and BV was administered into GB39, LI11 and BL23.
  • Immunohistochemical staining with TH antibody was performed on the brain samples collected from each group 10 days after the last MPTP injection. TH-IR neurons were counted bilaterally at least three TH-immunostained mesencephalicsections.
  • To determine whether the beneficial effect of BVA was associated with inhibition of the MPTP-induced glial response, we examined the expression of MAC-1, a marker of microglial activation, 10days after the last MPTP injection.

대상 데이터

  • Six-week-old male C57BL/6 mice(Samtaco Co, Korea), weighing 20~25g, wereusedinallexperiments. Before experiments, the mice were acclimated for 2 weeks in cages at 21°C and were provided with water and food adlibitum.

데이터처리

  • To rule out a possible change in SNpc volume as an influencing factor, the numbers of TH-IR neuron is expressed as a ratio of controls per area of SNpc. Statistical analysises were performed using analysis of variance (ANOVA). A Bonferroni multiple comparison test was used to compare individual means.

이론/모형

  • Statistical analysises were performed using analysis of variance (ANOVA). A Bonferroni multiple comparison test was used to compare individual means. Differences between the means of experimental groups were considered significant at p<0.
본문요약 정보가 도움이 되었나요?

참고문헌 (58)

  1. Lee JD, Park HJ, Chae Y, Lim S. An Overview of Bee Venom Acupuncture in the Treatment of Arthritis. Evid Based Complement Alternat Med. 2005 ; 2 : 79-84. 

  2. Goldberg A, Confino-Cohen R. Effectiveness of maintenance bee venom immunotherapy administered at 6-month intervals. Ann Allergy Asthma Immunol. 2007 ; 99 : 352-7. 

  3. Castro HJ, Mendez-Lnocencio JI, Omidvar B, Omidvar J, Santilli J, Nielsen HS Jr Pavot AP, Richert JR, Bellanti JA. A phase I study of the safety of honeybee venom extract as a possible treatment for patients with progressive forms of multiple sclerosis. Allergy Asthma Proc. 2005 ; 26 : 470-6. 

  4. Mirshafiey A. Venom therapy in multiple sclerosis. Neuropharmacology. 2007 ; 53(3) : 353-61. 

  5. Shinto L, Calabrese C, Morris C, Sinsheimer S, Bourdette D. Complementary and alternative medicine in multiple sclerosis: survey of licensed naturopaths. J Altern Complement Med. 2004 ; 10 : 891-7. 

  6. Wesselius T, Heersema DJ, Mostert JP, Heerings M, Admiraal-Behloul F, Talebian A, Van Buchem MA, De Keyser J. A randomized crossover study of bee sting therapy for multiple sclerosis. Neurology. 2005 ; 65 : 1764-8. 

  7. Eiseman JL, von Bredow J, Alvares AP. Effect of honeybee (Apis mellifera) venom on the course of adjuvant-induced arthritis and depression of drug metabolism in the rat. Biochem Pharmacol. 1982 ; 31(6) : 1139-46. 

  8. Kwon YB, Lee HJ, Han HJ, Mar WC, Kang SK, Yoon OB, Beitz AJ, Lee JH. The water-oluble fraction of bee venom produces anti-nociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sci. 2002 ; 71(2) : 191-204. 

  9. Schmidt JO. Biochemistry of insect venoms. Annu Rev Entomol. 1982 ; 27 : 339-68. 

  10. Lariviere WR, Melzack R. The bee venom test: a new tonic-pain test. Pain. 1996 ; 66(2-3) : 271-7. 

  11. Moon DO, Park SY, Lee KJ, Heo MS, Kim KC, Kim MO, Lee JD, Choi YH, Kim GY. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol. 2007 ; 7(8) : 1092-101. 

  12. Han S, Lee K, Yeo J, Kweon H, Woo S, Lee M, Baek H, Kim S, Park K. Effect of honey bee venom on microglial cells nitric oxide and tumor necrosis factor-alpha production stimulated by LPS. J Ethnopharmacol. 2007 ; 111(1) : 176-81. 

  13. Dauer W, Przedborski S. Parkinson's disease : mechanisms and models. Neuron. 2003 ; 39 : 889-909. 

  14. Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB, Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem. 2000 ; 74 : 2213-6. 

  15. Hunot S, Hirsch EC, Neuroinflammatory processes in Parkinson' disease Ann Neurol. 2003 ; 53 : Suppl 3 S49-58 ; discussion S58-60. 

  16. Wilms H, Zecca L, Rosenstiel P, Sievers J, Deuschl G, Lucius R. Inflammation in Parkinson's diseases and other neurodegenerative diseases : cause and therapeutic implications. Curr Pharm Des. 2007 ; 13 : 1925-8. 

  17. Wu DC, Teismann P, Tieu K, Vila M, Jackson- Lewis V, Ischiropoulos H, Przedborski S. NADPH oxidase mediates oxidative stress in the 1- methyl- 4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci USA. 2003 ; 100 : 6145-50. 

  18. Eberhardt O, Schulz JB, Apoptotic mechanisms and antiapoptotic therapy in the MPTP model of Parkinson's disease. Toxicol Lett. 2003 ; 139 : 135-51. 

  19. Teismann P, Schulz JB. Cellular pathology of Parkinson's disease : astrocytes, microglia and inflammation. Cell Tissue Res. 2004 ; 318(1) : 149-61. 

  20. Aloisi F. Immune function of microglia. Glia. 2001 ; 36(2) : 165-79. 

  21. Nakajima K, Kohsaka S. Microglia: activation and their significance in the central nervous system. J Biochem. 2001 ; 130(2) : 169-75. 

  22. Kohutnicka M, Lewandowska E, Kurkowska- Jastrzebska I, Czlonkowski A, Czlonkowska A. Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl -4-phenyl-1,2,3,6-tetrahydropyridine(MPTP). Immunopharmacology. 1998 ; 39(3) : 167-80. 

  23. McGeer PL, McGeer EG. Glial reactions in Parkinson's disease. Mov Disord. 2008 ; 23 : 474-83. 

  24. Przedborski S, Vila M. The 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine mouse model : a tool to explore the pathogenesis of Parkinson's disease. Ann N Y Acad Sci. 2003 ; 991 : 189-98. 

  25. Cassarino DS, Fall CP, Swerdlow RH, Smith TS, Halvorsen EM, Miller SW, Parks JP, Parker WD Jr, Bennett JP Jr. Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease. Biochim Biophys Acta. 1997 ; 1362 : 77-86. 

  26. Teismann P, Vila M, Choi DK, Tieu K, Wu DC, Jackson-Lewis V, Przedborski S, COX-2 and neurodegeneration in Parkinson's disease. Ann NY Acad Sci. 2003 ; 991 : 272-7. 

  27. Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 1995 ; 11 : 441-69. 

  28. Wegele H, Muller L, Buchner J. Hsp70 and Hsp90-a relay team for protein folding. Rev Physiol Biochem Pharmacol. 2004 ; 151 : 1-44. 

  29. Morimoto RI, Santoro MG. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechno.l 1998 ; 16(9) : 833-8. 

  30. Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson's disease. Nat Protoc. 2007 ; 2(1) : 141-51. 

  31. Burke RE, Cadet JL, Kent JD, Karanas AL, Jackson-Lewis V. An assessment of the validity of densitometric measures of striatal tyrosine hydroxylase-positive fibers : relationship to apomorphine-induced rotations in 6-hydroxydopamine lesioned rats. J Neurosci Methods. 1990 ; 35(1) : 63-73. 

  32. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990 ; 39(1) : 151-70. 

  33. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci. 2000 ; 20(16) : 6309-16. 

  34. Freyaldenhoven TE, Ali SF. Role of heat shock proteins in MPTP-induced neurotoxicity. Ann N Y Acad Sci. 1997 ; 825 : 167-78. 

  35. Tatton NA, Kish SJ, In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreate d mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience. 1997 ; 77 : 1037-48. 

  36. Eberhardt O, Coelln RV, Kugler S, Lindenau J, Rathke-Hartlieb S, Gerhardt E, Haid S, Isenmann S, Gravel C, Srinivasan A, Bahr M, Weller M, Dichgans J, Schulz JB. Protection by synergistic effects of adenovirus-mediated X- chromosomelinked inhibitor of apoptosis and glial cell linederived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J Neurosci. 2000 ; 20 : 9126-34. 

  37. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC. Caspase-3 : A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci USA. 2000 ; 97 : 2875-80. 

  38. Lang AE, Lozano AM. Parkinson's disease. First of two parts. N Engl J Med. 1998 ; 339(15) : 1044-53. 

  39. Deumens R, Blokland A, Prickaerts J. Modeling Parkinson's disease in rats : an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol. 2002 ; 175(2) : 303-17. 

  40. Schapira AH. Evidence for mitochondrial dysfunction in Parkinson's disease-a critical appraisal. Mov Disord. 1994 ; 9(2) : 125-38. 

  41. Ben-Shachar D, Zuk R, Glinka Y. Dopamine neurotoxicity : inhibition of mitochondrial respiration. J Neurochem. 1995 ; 64(2) : 718-23. 

  42. Hoehn MM, Yahr MD. Parkinsonism : onset, progression, and mortality. Neurology. 1998 ; 50(2) : 318-34. 

  43. Rosenberg RN. Mitochondrial therapy for Parkinson disease. Arch Neurol. 2002 ; 59(10) : 1523. 

  44. Mc Geer PL, Yasojima K, Mc Geer EG. Inflammation in Parkinson's disease. Adv Neurol. 2001 ; 86 : 83-9. 

  45. Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res. 2005 ; 81(3) : 302-13. 

  46. Beyer M, Gimsa U, Eyupoglu IY, Hailer NP, Nitsch R. Phagocytosis of neuronal or glial debris by microglial cells: upregulation of MHC class II expression and multinuclear giant cell formation in vitro. Glia. 2000 ; 31(3) : 262-6. 

  47. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine exposure. Ann Neurol. 1999 : 46(4) : 598-605. 

  48. Kang JM, Park HJ, Choi YG, Choe IH, Park JH, Kim YS, Lim S. Acupuncture inhibits microglial activation and inflammatory events in the MPTPinduced mouse model. Brain Res. 2007 ; 1131(1) : 211-9. 

  49. Tissieres A, Mitchell HK, Tracy UM. Proteinsyn the sis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol. 1974 ; 84(3) : 389-98. 

  50. Takumida M, Anniko M. Heat shock protein 70 delays gentamicin-induced vestibular hair cell death. Acta Otolaryngol. 2005 ; 125(1) : 23-8. 

  51. Kobayashi K. Induction of heat-shock protein(hsp) by moxibustion. Am J Chin Med. 1995 ; 23(3-4) :327-30. 

  52. Sun N, Shi J, Chen L, Liu X, Guan X. Influence of electroacupuncture on the mRNA of heat shock protein 70 and 90 in brain after cerebral ischemia/ reperfusion of rats. J Huazhong Univ Sci Technolog Med Sci. 2003 : 23(2) : 112-5. 

  53. Boyd JD, Jang H, Shepherd KR, Faherty C, Slack S, Jiao Y, Smeyne RJ. Response to 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP) differs in mouse strains and reveals a divergence in JNK signaling and COX-2 induction prior to loss of neurons in the substantia nigra pars compacta. Brain Res. 2007 ; 1175 : 107-116. 

  54. Asanuma M, MiyazakiI,OgawaN.Dopamine-orLDOPA- induced neurotoxicity : the role of dopamine quinone formationand tyrosinase in a model of Parkinson's disease. Neurotox Res 2003 ; 5(3) : 165-76. 

  55. Haavik J, Toska K. Tyrosine hydroxylase and Parkinson's disease. Mol Neurobiol. 1998 : 16(3) : 285-309. 

  56. Hurley FM, Costello DJ, Sullivan AM. Neuroprotective effects of delayed administration of growth/ differentiation factor-5 in the partial lesion model of Parkinson's disease. Exp Neurol. 2004 ; 185(2) : 281-9. 

  57. Oiwa Y, Yoshimura R, Nakai K, Itakura T. Dopaminergic neuroprotection and regeneration by neurturin assessed by using behavioral, biochemical and histochemical measurements in a model of progressive Parkinson's disease. Brain Res. 2002 ; 947(2) : 271-83. 

  58. Park HJ, Lim S, Joo WS, Yin CS, Lee HS, Lee HJ, Seo JC, Leem K, Son YS, Kim YJ, Kim CJ, Kim YS, Chung JH. Acupuncture prevents 6- hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson's disease model. Exp Neurol. 2003 ; 180(1) : 93-8. 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로