$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식물 지방산 생산량의 증진을 위한 생명공학 연구현황
Current biotechnology for the increase of vegetable oil yield in transgenic plants 원문보기

Journal of plant biotechnology = 식물생명공학회지, v.38 no.4, 2011년, pp.241 - 250  

이경렬 (국립농업과학원 농업생명자원부) ,  최윤정 (국립농업과학원 농업생명자원부) ,  김순희 (국립농업과학원 농업생명자원부) ,  노경희 (국립농업과학원 농업생명자원부) ,  김종범 (국립농업과학원 농업생명자원부) ,  김현욱 (국립농업과학원 농업생명자원부)

초록
AI-Helper 아이콘AI-Helper

식물유의 거의 대부분은 triacylglycerol (TAG) 형태로 종자에 축적되어있으며 이는 종자가 발아할 때에 필수적인 에너지공급원이자 동물과 인간들에게 필수지방산과 중요한 에너지원이다. 최근 식용유의 건강기능성으로 수요증가와 더불어 바이오디젤과 산업원료 등의 산업적 수요도 증가함에 따라 더욱 중요한 자원이 되고 있다. 그래서 생명공학기술종자유의 함량을 증진하고자 하면 지질 생합성에 탄소의 유입에 관여하는 조절 유전자를 과발현 또는 억제하는 것이 결정적으로 중요하다. 본 총설에서는 지질함량에 영향을 미치는 것으로 여겨지는 후보 유전자들에 대해 기술하고 이들의 지방 함량 증대 가능성을 조사하였다. 식물의 지방산의 생합성과 종자유의 축적에 관여하는 유전자들은 크게 구분하자면 첫째, TAG가 생합성되기 위해 필요한 전구체를 합성하는 유전자, 둘째, 지방산합성과 TAG 축적에 관여하는 유전자, 셋째, 종자 발달과 종자유 축적에 관여하는 전사인자 유전자가 있다. 종자유 함량을 결정하는 대사들은 앞에서 언급했듯이 매우 복잡하기 때문에 최근에 전사인자의 조절이 다수의 지방생산 대사 유전자를 동시 조작하여 형질전환 식물에서 종자유 함량이 증진하는 것보다 더 바람직한 접근법으로 여겨지고 있다. 그러나 전사조절유전자의 과발현에 의해 나쁜 농업형질의 유도 같은 문제점도 해결해야 한다.

Abstract AI-Helper 아이콘AI-Helper

The most part of vegetable oils is accumulated as storage lipid, triacylglycerol (TAG) in seed and used as energy source when seed is germinated. It is also used as essential fatty acids and energy source for human and animal. Recently, vegetable oils have been more and more an important resource be...

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • TAG 생합성에 직접적으로 관련된 acyltransferase를 찾아내어 유지작물의 미숙종자에서 과발현시킨다면 종자의 지방산 함량을 증진할 수 있을 것이다. 그런 의미에서 TAG 생합성에 관련된 acyltransferase와 이를 형질 전환하여 종자지방산 함량이 증진된 연구 사례를 보도록 하겠다.
  • (1) TAG 합성에 필요한 전구체의 증진대사, (2) TAG의 주성분인 지방산의 합성 조절과 지방산의 TAG로의 전환에 관여하는 대사, (3) 종자발달 과정 중 지방과 전분, 단백질 생산의 상호 대사 조절, (4) TAG합성에 총체적으로 조절할 수 있는 전사조절 단계이다. 본 총설에서는 식물 종자유인 TAG생성에 관여하는 대사과정을 4단계로 나누어 식물의 지방생성에 관련된 유전자들에 대해 알아보고 이들을 과발현 했을 때에, 또 이들 유전자의 발현을 조절하는 전사인자를 과발현 하였을 때에 종자유 함량이 증가된 연구사례들을 소개하고 미래의 연구전망에 대해서 논하고자 한다.
  • 그래서 생명공학기술로 종자유의 함량을 증진하고자 하면 지질 생합성에 탄소의 유입에 관여하는 조절 유전자를 과발현 또는 억제하는 것이 결정적으로 중요하다. 본 총설에서는 지질함량에 영향을 미치는 것으로 여겨지는 후보 유전자들에 대해 기술하고 이들의 지방 함량 증대 가능성을 조사하였다. 식물의 지방산의 생합성과 종자유의 축적에 관여하는 유전자들은 크게 구분하자면 첫째, TAG가 생합성되기 위해 필요한 전구체를 합성하는 유전자, 둘째, 지방산합성과 TAG 축적에 관여하는 유전자, 셋째, 종자 발달과 종자유 축적에 관여하는 전사인자 유전자가 있다.

가설 설정

  • 2003). 미토콘드리아에서 acetyl-CoA의 가수분해 산물인 acetate가 색소체로 이동하여 acetyl-CoA로 재전환되는 것이라는 가설을 제시했고 이 형질전환 애기장대의 종자에서 동위원소로 표지된 대사물질의 분석결과는 이 가설을 지지했다 (Fig. 2; Marillia et al. 2003).
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
일반적으로 식물의 종자유와 세포막 지질을 구성하는 지방산의 종류는 무엇인가? org/corp/ statistics/en/). 일반적으로 식물의 종자유와 세포막 지질을 구성하는 지방산은 팔미트산 (Palmitic acid, 16:0), 스테아르산 (Stearic acid, 18:0), 올레산 (Oleic acid, 18:1), 리놀레산(Linoleic acid, 18:2), 알파리놀렌산 (α-Linolenic acid, 18:3)의 5가지이다. 세포막과 엽록체막의 지방산의 구성은 지질의 종류가 다르듯이 약간 다른데 엽록체막의 당지질에는 16:1, 16:2, 16:3 등의 불포화지방산도 포함하고 있다.
식물에서 지방산 생합성은 어디에서 시작되나요? 식물에서 지방산 생합성은 색소체 (plastid)에서 시작되고 적당한 크기가 되면 소포체로 이동하여 막지질 또는 저장지질의 구성성분이 된다. 좀 더 자세히 살펴보자면, 색소체에서 acetyl-CoA가 acetyl-CoA carboxylase (ACCase)에 의해 malonyl-CoA가 되고 ACP와 결합하여 malonylACP가 되고 계속적으로 malonyl-CoA에서 탄소 2개를 계속 전달받아 16:0-ACP로 길어지고 16:0-ACP는 16:0-ACP elongase에 의해 18:0-ACP가 되고 이것은 다시 18:0-ACP Δ9-desaturase에 의해 18:1-ACP가 된다.
식물의 지방산 생합성과 triacylglycerol 형태로 종자 축적에 관여하는 유전자를 분류하면 어떤 것이 있나요? 본 총설에서는 지질함량에 영향을 미치는 것으로 여겨지는 후보 유전자들에 대해 기술하고 이들의 지방 함량 증대 가능성을 조사하였다. 식물의 지방산의 생합성과 종자유의 축적에 관여하는 유전자들은 크게 구분하자면 첫째, TAG가 생합성되기 위해 필요한 전구체를 합성하는 유전자, 둘째, 지방산합성과 TAG 축적에 관여하는 유전자, 셋째, 종자 발달과 종자유 축적에 관여하는 전사인자 유전자가 있다. 종자유 함량을 결정하는 대사들은 앞에서 언급했듯이 매우 복잡하기 때문에 최근에 전사인자의 조절이 다수의 지방생산 대사 유전자를 동시 조작하여 형질전환 식물에서 종자유 함량이 증진하는 것보다 더 바람직한 접근법으로 여겨지고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (62)

  1. Andre C, Froehlich JE, Moll MR, Benning C (2007) A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19:2006-2022. 

  2. Banas A, Dahlqvist A, Stahl U, Lenman M, Stymne S (2000) The involvement of phospholipid:diacylglycerol acyltransferases in triacylglycerol production. Biochem Soc Trans 28:703-705. 

  3. Baud S, Wuilleme S, Dubreucq B, de Almeida A, Vuagnat C, Lepiniec L, Miquel M, Rochat C (2007a) Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J 52:405-419. 

  4. Baud S, Santos Mendoza M, To A, Harsoet E, Lepiniec L, Dubreucq B (2007b) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825-838. 

  5. Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19:351-368. 

  6. Broun P, Somerville C (1997) Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol 113:933-942. 

  7. Brown AP, Slabas AR, Denton H (2002) Substrate selectivity of plant and microbial lysophosphatidic acid acyltransferases. Phytochemistry 61:493-501. 

  8. Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6:819-831. 

  9. Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487-6492. 

  10. van Erp H, Bates PD, Burgal J, Shockey J, Browse J (2011) Castor Phospholipid:Diacylglycerol Acyltransferase Facilitates Efficient Metabolism of Hydroxy Fatty Acids in Transgenic Arabidopsis. Plant Physiol 155:683-693. 

  11. Focks N, Benning C (1998) wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118: 91-101. 

  12. Gao M-J, Lydiate DJ, Li X, Lui H, Gjetvaj B, Hegedus DD, Rozwadowski K (2009) Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 21:54-71. 

  13. He X, Turner C, Chen GQ, Lin JT, McKeon TA (2004a) Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean. Lipids 39:311-318. 

  14. He X, Chen GQ, Lin JT, McKeon TA (2004b) Regulation of diacylglycerol acyltransferase in developing seeds of castor. Lipids 39:865-871. 

  15. Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861-874. 

  16. Katavic V, ReedDW, Taylor DC, Giblin EM, Barton DL, Zou J, MacKenzie SL, Covello PS, Kunst L (1995) Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol 108:399-409. 

  17. Kennedy EP (1961) Biosynthesis of complex lipids. Fed Proc Am Soc Exp Biol 20:934-940. 

  18. Kim HU, Li Y, Huang AH (2005) Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell 17:1073-1089. 

  19. Kim HU, Lee K-R, Go YS, Jung JH, Suh M-C, Kim JB (2011) Endoplasmic Reticulum-Located PDAT1-2 from Castor Bean Enhances Hydroxy Fatty Acid Accumulation in Transgenic Plants. Plant Cell Physiol. 52:983-993. 

  20. Knutzon DS, Hayes TR, Wyrick A, Xiong H, Maelor Davies H, Voelker TA (1999) Lysophosphatidic acid acyltransferase from coconut mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiol 120:739-746. 

  21. Kroon JT, Wei W, Simon WJ, Slabas AR (2006) Identification and functional expression of a type 2 acyl-CoA:diacylglcerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry 67:2541-2549. 

  22. Lassner MW, Levering CK, Davies HM, Knutzon DS (1995) Lysophophatidic acid acyltransferase from medowfoam mediates insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil. Plant Physiol 109:1389-1394. 

  23. Lu C, Xin Z, Ren Z, Miquel M, Browse J (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci USA 106:18837-18842. 

  24. Lung SC, Weselake RJ (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41:1073-1088. 

  25. Maisonneuve S, Bessoule J-J, Lessire R, Delseny M, Roscoe TJ (2010) Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol 152:670-684. 

  26. Marillia E-F, Micallef BJ, Micallef M, Weninger A, Pedersen KK, Zou J, Taylor DC (2003) Biochemical and physiological studies of Arabidopsis thaliana transgenic lines with repressed expression of the mitochondrial pyruvate dehydrogenase kinase. J Exp Bot 54:259-270. 

  27. Metzger JO, Bornscheuer U (2006) Lipids as renewable resource: current state of chemical and biotechonological conversion and diversification. Appl Microbiol Biotechnol 7:13-22. 

  28. Mhaske V, Beldjilali K, Ohlrogge J, Pollard M (2005) Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid:diacylglycerol transacylase gene (At5g13640). Plant Physiol Biochem 43:413-417. 

  29. Mu J, Tan H, Zheng Q, Fu F, Liang Y, Zhang J, Yang X, Wang T, Chong K, Wang X-J, Zuo J (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042-1054. 

  30. Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839-13844. 

  31. Ohlrogge JB, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957-970. 

  32. Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 Gene Encodes the Enzyme That is Essential for Polyunsaturated Lipid Synthesis. Plant Cell 6:147-158. 

  33. Rider Jr SD, Henderson JT, Jerome RE, Edenberg HJ, Romero-Severson J, Ogas J (2003) Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J 35:33-43. 

  34. Rider Jr SD, Hemm MR, Hostetler HA, Li H-C, Chapple C, Ogas J (2004) Metabolic profiling of the Arabidopsis pkl mutant reveals selective derepression of embryonic traits. Planta 219:489-499. 

  35. Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 113:75-81. 

  36. Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191-1206. 

  37. Saha S, Enugutti B, Rajakumari S, Rajasekharan RL (2006) Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol 141:1533-1543. 

  38. Santos Mendoza M, Dubreucq B, Miquel M, Caboche M, Lepiniec L (2005) LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett 579:4666-4670. 

  39. Santos Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608-620. 

  40. Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, Nubei D, Tarczynski MC (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980-987. 

  41. Shockey JM, Gidda SK, Chapital DC, Kuan JC, Shanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18:2294-2313. 

  42. Slack CR, Campbell LC, Browse JA, Roughan PG (1983) Some evidence for the reversibility of cholinephosphotransferase-catalyzed reaction in developing linseed cotyledons in vivo. Biochim Biophys Acta 754:10-20. 

  43. Slocombe SP, Cornah J, Pinfield-Wells H, Soady K, Zhang Q, Gilday A, Dyer JM, Graham IA (2009) Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol J 7:694-703. 

  44. Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, Wang G, Zuo J (2011) Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-like in developing seeds. Plant Physiol 156:1577-1588. 

  45. To A, Valon V, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642-1651. 

  46. Vigeolas H, Geigenberger P (2004) Increased levels of glycerol-3-phosphate lead to a stimulation of flux into triacylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L. in planta. Planta 219:827-835. 

  47. Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotech J 5:431-441. 

  48. Vogel G, Browse J (1996) Cholinephosphotransferase and diacylglycerol acyltransferase: Substrate specificities at a key branch point in seed lipid metabolism. Plant Physiol 110:923-931. 

  49. Wakao S, Andre C, Benning C (2008) Functional analyses of cytosolic glucose-6-phosphate dehydrogenases and their contribution to seed oil accumulation in Arabidopsis. Plant Physiol 146:277-288. 

  50. Wang H, Guo J, Lambert KN, Lin Y (2007a) Developmental control of Arabidopsis seed oil biosynthesis. Planta 226:773-783. 

  51. Wang H-W, Zhang B, Hao YJ, Huang J, Tian AG, Liao Y, Zhang J-S, Chen S-Y (2007b) The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J 52:716-729. 

  52. Xiao S and Chye M (2009) An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members. Plant Physiol Biochem 47:479-484. 

  53. Xu J, Francis T, Mietkiewska E, Gibline EM, Barton DL, Zhang Y, Zhang M, Taylor DC (2008) Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotech J 6:799-818. 

  54. Yurchenko OP, Nykiforuk CL, Moloney MM, Stahl U, Bana? A, Stymne S, Weselake RJ (2009) A 10-kDa acyl-CoA-binding protein (ACBP) from Brassica napus enhances acyl exchange between acyl-CoA and phosphatidylcholine. Plant Biotech J 7:602-610. 

  55. Yurchenko OP, Weselake RJ (2011) Involvement of low molecular mass soluble acyl-CoA-binding protein in seed oil biosynthesis. New Biotechnol 28:97-109. 

  56. Zhang ZZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430-440. 

  57. Zhang J, Martin JM, Beecher B, Lu C, Hannah LC, Wall ML, Altosaar I, Giroux MJ (2010) The ectopic expression of the wheat puroindoline genes increase germ size and seed oil content in transgenic corn. Plant Mol Biol 74:353-365. 

  58. Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J (2003) Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acytransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15:1872-1887. 

  59. Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G-Y, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367-372. 

  60. Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19:645-653. 

  61. Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909-923. 

  62. Zou J, Qi Q, Katavic V, Marillia E-F, Taylor DC (1999) Effects of antisense repression of an Arabidopsis thaliana pyruvate dehydrogenase kinase cDNA on plant development. Plant Mol Biol 41:837-849. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로