최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기大韓化粧品學會誌 = Journal of the society of cosmetic scientists of Korea, v.37 no.1, 2011년, pp.1 - 21
조완구 (전주대학교 대체의학대학 기초의과학과)
This review describes several kinds of emulsification methods for nanoemulsions and the application of nanoemulsions. Nanoemulsion droplet sizes fall typically in the range of 20 ~200 nm and show narrow size distributions. Although most of the publications on either oil-in-water (O/W) or water-in-oi...
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
나노에멀젼은 마이크로에멀젼과 달리 어떤 특징을 가지는가? | 나노에멀젼은 입자가 50 ∼ 200 nm의 크기를 가지며 열역학적으로 안정한 마이크로에멀젼과는 달리 운동학적으로만 안정하다[1,2]. 그러나 나노에멀젼은 마크로에멀젼과는 달리 입자들 사이의 응집 현상이나 합일현상이 없기 때문에 낮은 점도 조건에서도 장기간 안정하다[3.4]. | |
생활용품이나 화장품 분야에서 나노에멀젼이 유용한 제형으로 사용되는 것에 대한 이유는 무엇이 있는가? | 생활용품이나 화장품 분야에서 나노에멀젼이 유용한 제형으로 사용되는 것은 이유는 다음과 같다. 첫째, 나노에멀젼은 입자가 매우 작아, 입자의 브라운 운동으로 중력의 영향을 받지 않아 침전 또는 크리밍 현상에 자유롭다. 둘째, 작은 입자로 응집 현상이 없어 에멀젼이 분리될 가능성이 낮다. 셋째, 작은 입자는 입자의 변형이 적어 합일을 방지할 수 있다. 더욱이 입자의 반경에 비해 두꺼운 계면 막은 입체적 안정화에 기여한다. 넷째, 작은 입자로 넓은 계면 막을 보유하여 유효성분의 피부 침투를 개선할 수 있다. 다섯째, 투명하고 낮은 점도로 피부에 청량감을 줄 수 있으며 여섯째, 마이크로에멀젼에 비해 현격하게 적은 계면활성제로 제조가 가능하며, 피부 표면에 균일한 도포가 가능하다. 이상과 같은 다양한 장점에도 불구하고 나노에멀젼은 고압 유화기와 같은 특별한 제조기기가 필요하고 안정성 기작에 대한 이해도가 떨어지는 등 단점을 가지고 있다. | |
나노에멀젼은 실용적인 측면에서 어느 분야에서 연구되고 있는가? | 4]. 나노에멀젼은 입자 크기의 특성 때문에 육안으로 Figure 1과 같이 투명 또는 반투명으로 보이며 따라서 나노에멀젼은 기본적으로 과학적인 흥미를 유발할 뿐만 아니라 실용적인 측면에서도 화장품, 의약품, 화학분야에서 다양하게 연구되고 있다[5-14]. O/W 타입 나노에멀젼은 오래전부터 연구되어 왔으며 많은 연구자들이 검토하였다[6-12]. |
T. Tadros, P. Izquierdo, J. Esquena, and C. Solans, Formation and stability of nano-emulsions, Adv. Colloid Interface Sci., 108-109, 303 (2004).
A. Forgiarini, J. Esquena, J. Gonzalez, and C. Solans, Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation, Prog. Colloid Polym. Sci., 115, 36 (2000).
J. Ugelstadt, M. S. El-Aassar, and J. W. Vanderhoff, Emulsion polymerization: initiation of polymerization in monomer droplet, J. Polym. Sci., 11, 503 (1973).
J. M. Gutierrez, C. Gonzalez, A. Maestro, I. Sole, C. M. Pey, and J. Nolla, Nano-emulsions: New applications and optimization of their preparation, Curr. Opin. Colloid Interface Sci., 13, 245 (2008).
C. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma, Nano-emulsions, Curr. Opin. Colloid Interface Sci., 10, 102 (2005).
M. S. El-Aasser and E. D. Sudol, Miniemulsions: overview of research and applications, JCT Res., 1(1), 21 (2004).
S. Amselem and D. Friedman, Submicron emulsions as drug carriers for topical administration, ed. S. Benita, 153, Harwood Academic Publishers, London (1998).
C. Solans, J. Esquena, A. Forgiarini, D. Morales, N. Uson, and P. Izquierdo, Surfactants in solution: fundamentals and applications, Surfactant Science Series, eds. D. Shah, B. Moudgil, and K. L. Mittal, 525, Marcel Dekker, New York (2002).
M. D. Alam, L. K. Shrestha, and K. Aramaki, Glycerol effects on the foemation and rheology of cubic phase and related gel emulsion, J. Colloid Interface Sci., 329, 366 (2009).
M. S. El-Aasser and C. M. Miller, Polymeric dispersions: principles and applications, ed. J. M. Asua, 109, Kluwer Academic Publishers, Dordrecht (1997).
M. Antonietti and K. Landfester, Polyreactions in miniemulsions, Prog. Polym. Sci., 27, 689 (2002).
J. M. Asua, Miniemulsion polymerization, Prog. Polym. Sci., 27, 1283 (2002).
K. Landfester, M. Willert, and M. Antonietti, Preparation of polymer particles in nonaqueous direct and inverse miniemulsions, Macromolecules, 33(7), 2370 (2000).
N. Uson, M. J. Garcia, and C. Solans, Formation of water-in-oil (W/O) nanoemulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method, Colloids Surf. A, 250, 415 (2004).
A. S. Kabalnov, Modern aspects of emulsion science, ed. B. P. Binks, 212, Royal Society of Chemistry, Cambridge (1998).
T. Pan, Z. Wanga, J. H. Xu, Z. Wu, and H. Qi, Stripping of nonionic surfactants from the coacervate phase of cloud point system for lipase separation by Winsor II microemulsion extraction with the direct addition of alcohols, Process Biochem., 45, 771 (2010).
W. Liu, D. Sun, C. Li, Q. Liu, and J. Xu, Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method, J. Colloid Interface Sci., 303, 557 (2006).
K. Landfester, J. Eisenblatter, and R. Rothe, Preparation of polymerizable miniemulsions by ultrasonication, JCT Res., 1, 65 (2004).
K. Shinoda and H. Saito, The effect of temperature on the phase equilibria and the types of dispersion of the ternary system composed of water, cyclohexane, and nonionic surfactant, J. Colloid Interface Sci., 26, 70 (1968).
S. A. Vitale and J. L. Katz, Liquid droplet dispersions formed by homogeneous liquid-liquid nucleation: 'The Ouzo effect', Langmuir, 19, 4105 (2003).
F. Ganachaud and J. L. Katz, Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices, Chemphyschem., 6, 209 (2005).
J. L. Dickson, C. Ortiz-Estrada, J. F. J. Alvarado, H. S. Hwang, I. C. Sanchez, and G. Luna-Barcenas, Critical flocculation density of dilute water-in-CO2 emulsions stabilized with block copolymers, J. Colloid Interface Sci., 272, 444 (2004).
A. Taden, M. Antonietti, A. Heilig, and K. Landfester, Inorganic films from three different phosphors via a liquid coating route from inverse miniemulsions, Chem. Mater., 16, 5081 (2004).
H. M. Courrier, T. F. Vandamme, and M. P. Krafft, Reverse water-in-fluorocarbon emulsions and microemulsions obtained with a fluorinated surfactant, Colloids Surf. A, 244(1), 141 (2004).
A. Forgiarini, J. Esquena, C. Gonzalez, and C. Solans, Formation of nano-emulsions by low-energy emulsification methods at constant temperature, Langmuir, 17, 2076 (2001).
H. Wu, C. Ramachandran, N. D. Weiner, and B. J. Roessler, Topical transport of hydrophilic compounds using water-in-oil nanoemulsions, Int. J. Pharm., 220, 63 (2001).
M. Porras, C. Solans, C. Gonzalez, A. Martinez, A. Guinart, and J. M. Gutierrez, Studies of formation of w/o nano-emulsions, Colloids Surf. A, 249, 115 (2004).
N. Uson, M. J. Garcia, and C. Solans, Formation of water-in-oil (w/o) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method, Colloids Surf. A, 250, 415 (2004).
I. Sole, A. Maestro, C. M. Pey, C. Gonzalez, C. Solans, and J. M. Gutierrez, Nanoemulsions preparation by low energy methods in an ionic surfactant system, Colloids Surf. A, 288, 138 (2006).
I. Sole, A. Maestro, C. Gonzalez, C. Solans, and J. M. Gutierrez, Optimization of nanoemulsion preparation by low-energy methods in an ionic surfactant system, Langmuir, 22, 8326 (2006).
K. Ogino, Recent progress of emulsification techniques, Fragrance J., 8, 11 (1998).
R. K. Thakur, C. Villette, J. M. Aubry, and G. Delaplace, Dynamic emulsification and catastrophic phase inversion of lecithin-based emulsions, Colloids Surf. A, 315, 285 (2008).
P. Fernandez, V. Andre, J. Rieger, and A. Kuhnle, Nano-emulsion formation by emulsion phase inversion, Colloids Surf. A, 251, 53 (2004).
H. Kunieda, K. Hanno, S. Yamaguchi, and K. Shinoda, The three-phase behavior of a brine/ionic surfactant/nonionic surfactant/oil system: Evaluation of the hydrophile-lipophile balance (HLB) of ionic surfactant, J. Colloid Interface Sci., 107(1), 129 (1985).
K. Shinoda and H. Saito, The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant, J. Colloid Interface Sci., 26(1), 70 (1968).
H. Arai and K. Shinoda, The effect of mixing of oils and of nonionic surfactants on the phase inversion temperatures of emulsions, J. Colloid Interface Sci., 25(3), 396 (1967).
K. Shinoda and H. Takeda, The effect of added salts in water on the hydrophile-lipophile balance of nonionic surfactants: The effect of added salts on the phase inversion temperature of emulsions, J. Colloid Interface Sci., 32(4), 642 (1970).
S. L. Ee, X. Duan, J. Liew, and Q. D. Nguyen, Droplet size and stability of nano-emulsions produced by the temperature phase inversion method, Chem. Eng. J., 140, 626 (2008).
K. Shinoda, Solution behaviour of surfactants: the importance of surfactant phase and the continuous change in HLB of surfactant, Prog. Colloid Polym. Sci., 68, 1 (1983).
H. Kunieda, H. Asaoka, and K. Shinida, Two types of surfactant phases and four coexisting liquid phases in a water/nonionic surfactant/triglyceride/hydrocarbon system, J. Phys. Chem., 92, 185 (1988).
C. A. Miller, M. Gradzielski, H. Hoffmann, U. Kramer, and C. Thunig, Experimental results for the L3 phase in a zwitterionic surfactant and their implications regarding structures, Colloid Polym. Sci., 268, 1066 (1990).
R. Strey, W. Jahn, G. Porte, and P. Bassereau, Freeze fracture electron microscopy of dilute lamellar and anomalous isotropic (L3) phases, Langmuir, 6, 1635 (1990).
K. Watanabe, Y. Nakama, T. Yanaki, and H. Hoffmann, Novel vesicle and sponge phase prepared in amphoteric surfactant/anionic surfactant/oleic acid/water system, Langmuir, 17, 7219 (2001).
P. Izquierdo, J. Feng, J. Esquena, T. F. Tadros, J. C. Dederen, M. J. Garcia, N. Azemar, and C. Solans, The influence of surfactant mixing ratio on nanoemulsion formation by the pit method, J. Colloid Interface, Sci., 285, 388 (2005).
H. Kunieda and K. Shinoda, Correlation between critical solution phenomena and ultralow interfacial tensions in a surfactant/water/oil system, Bull. Chem. Soc. Jpn., 55, 1777 (1982).
H. Hoffmann, C. Thunnig, U. Munkert, H. W. Meyer, and W. Richer, From vesicles to the L3 (sponge) phase in alkyldimethylamine oxide/heptanol systems, Langmuir, 8, 2629 (1992).
W. Jahn and R. Strey, Microstructure of microemulsions by freeze fracture electron microscopy, J. Phys. Chem., 92, 2294 (1988).
T. Imae, T. Iwamoto, G. Platz, and C. Thunig, Electron microscopic and light scattering observation on a system with two iridescent phases, Colloid Polym. Sci., 272, 604 (1994).
H. Kunieda, M. Tanimoto, K. Shigeta, and C. Rodriguez, Highly concentrated cubic-pase emulsions: Basic study on D-phase emulsification using isotopic gels, J. Oleo. Sci., 5(8), 633 (2001).
T. Suzuki, M. Kai, and A. Ishida, Formation mechanism of stable low viscous O/W emulsions containing ethanol: Influence of ethanol concentration during emulsification, J. Jpn. Oil Chemists' Soc., 34, 938 (1985).
T. Suzuki, H. Takei, and S. Yamazaki, Formation of fine three-phase emulsions by the liquid crystal emulsification method with arginine $\beta$ -branched monoalkyl phosphate, J. Colloid Interface Sci.., 129(2), 491 (1989).
S. Tomomasa, M. Kouchi, and H. Nakajima, Microemulsion formation in two-phase region preparation method and stability, J. Jpn. Oil Chemists' Soc., 37, 1012 (1988).
H. M. Haake, W. Seipel, and S. Cornelsen, A Microwax dispersion to condition hair and reduce breakage, Cosmetics & Toiletries, 124(11), 46 (2009).
E. Matsuura, A. Noda, Y. Shiojima, T. Ohmura, Y. Nakama, H. Nakajima, M. Yamaguchi, and Y. Kumano, A transparent liquid hair wax made by a novel aqueous nano-dispersion technique, Proceedings XXIst IFSCC International Congress, Berlin, 272 (2000).
E. Matsuura, A. Noda, Y. Shiojima, T. Ohmura, Y. Nakama, H. Nakajima, M. Yamaguchi, and Y. Kumano, A transparent liquid hair wax made by a novel aqueous nano-dispersion technique, Proceedings XXIst IFSCC International Congress, Berlin, 272 (2000).
P. Walstra, Encyclopedia of emulsion technology, ed. P. Becher, 1, Marcel Dekker, New York (1996).
J. Floury, A. Desrumaux, M. A. V. Axelos, and J. Legrand, Effect of high pressure homogenisation on methycellulose as food emulsifier, J. Food Eng., 58, 227 (2003).
S. A. Vitale and J. L. Katz, Liquid droplet dispersions formed by homogeneous liquid-liquid nucleation: The Ouzo effect, Langmuir, 19, 4105 (2003).
F. Ganachaud and J. L. Katz, Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices, Chemphyschem., 6, 209 (2005).
K. Bouchemal, S. Briancon, E. Perrier, and H. Fessi, Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation, Int. J. Pharm., 280, 241 (2004).
S. A. Wissing, O. Kayser, and R. H. Muller, Solid lipid nanoparticles for parenteral drug delivery, Adv. Drug Deliv. Rev., 56, 1257 (2004).
L. Priano, D. Esposti, R. Esposti, G. Castagna, C. De Medici, F. Fraschini, and M. R. Gasco, A. Mauro, Solid lipid nanoparticles incorporating melatonin as newmodel for sustained oral and transdermal delivery systems, J. Nanosci. Nanotechnol., 7, 3596 (2007).
B. Sjostrom and B. Bergenstahl, Preparation of submicron drug particles in lecithin-stabilized o/w emulsions, I. Model studies of the precipitation of cholesteryl acetate. Int. J. Pharm., 88, 53 (1992).
M. Trotta, F. Debernardi, and O. Caputo, Preparation of solid lipid nanoparticles by a solvent emulsification- diffusion technique, Int. J. Pharm., 257, 153 (2003).
M. A. Schubert and C. C. Muller-Goymann, Solvent injection as a new approach for manufacturing lipid nanoparticles-.evaluation of the method and process parameters, Eur. J. Pharm. Biopharm., 55, 125 (2003).
B. Heurtault, P. Saulnier, B. Pech, J. E. Proust, J. P. Benoit, A novel phase inversion-based process for the preparation of lipid nanocarriers, Pharm. Res., 19, 875 (2002).
M. Garcy-Fuentes, D. Torres, and M. Alonso, Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules, Colloid Surf. B, 27, 159 (2002).
C. Puglia, P. Blasi, L. Rizza, A. Schoubben, F. Bonina, C. Rossi, and M. Ricci, Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation, Int. J. Pharm., 357, 295 (2008).
A. A. El-Harati, C. Charcosset, and H. Fessi, Influence of the formulation for solid lipid nanoparticles prepared with a membrane contactor, Pharm. Dev. Technol., 11, 153 (2006).
J. Pardeike, A. Hommoss, R. H. Muller. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products, Int. J. Pharm., 366, 170 (2009).
D. Moinard-Checot, Y. Chevalier, S. Briancon, L. Beney, and H. Fessi, Mechanism of nanocapsules formation by the emulsion diffusion process, J. Colloid Interface Sci., 317, 458 (2008).
Z. B. Zhang, Z. G. Shen, J. X. Wang, H. X. Zhang, H. Zhao, J. F. Chen, and J. Yun, Micronization of silybin by the emulsion solvent diffusion method, Int. J. Pharm., 376, 116 (2009).
O. E. Esposito, M. Drechsler, P. Mariani, E. Sivieri, R. Bozzini, L. Montesi, E. Menegatti, and R. Cortesi, Nanosystems for skin hydration: a comparative study, Int. J. Cosmet. Sci., 29, 39 (2007).
O. Sonneville-Aubrun, J. T. Simonnet, and F. L'Alloret, Nanoemulsions: a new vehicle for skincare products, Adv. Colloid Interface Sci., 108-109, 145 (2004).
P. R. Sperry, H. B. Hopfenberg, N. L. Thomas, A simple quantitative model for the volume restriction flocculation of latex by water-soluble polymers, J. Colloid Interface Sci., 82(1), 62 (1981).
S. J. Radford and E. Dickinson. Depletion flocculation of caseinate-stabilised emulsions: what is the optimum size of the non-adsorbed protein nano-particles?, Colloids Surf. A, 238, 71 (2004),
H. Iwai, J. Fukasawa, M. Fukuda, I. Sugai, H. Uchida, and T. Suzuki, Application of liquid crystal to a skin care cosmetics and its properties. J. Soc. Cosmet. Chem. Jpn., 30(3), 310 (1996).
T. Suzuki, K. Yoda, H. Iwai, K. Fukuda, and H. Hotta, Studies surface science and Catalysis, Proceedings International Conference on Colloid and Surface Science, 132, 1025, (2001).
D. S. Seo, J. C. Kim. H. H. Sohn, W. G. Cho, S. U. Lee, E. Y. Kim, G. Tae, J. D. Kim, S. Y. Lee, and H. Y. Lee, Two-dimensional packing patterns of amino acid surfactant and higher alcohols in an aqueous phase and their associated packing parameters, J. Colloid Interface Sci., 273, 596 (2004).
W. G. Cho and S. J. Kim, Formation of skin lotions using various vehicles and skin hydration effects for a skin, J. Kor. Oil Chemists' Soc., 26(2), 1 (2009).
P. T. Spicer, K. L. Hayden, M. L. Lynch, A. Ofori- Boateng, and J. L. Burns, Novel process for producing cubic liquid crystalline nanoparticles (cubosomes), Langmuir, 17, 5748 (2001).
P. T. Spicer, W. B. Small, M. L. Lynch, and J. L. Burns, Dry powder precursors of soft cubic liquid crystalline nanoparticles (cubosomes), J. Nanoparticle Res., 4, 297 (2002).
P. T. Spicer, Cubosome processing: Industrial nanoparticle technology development, Chem. Eng. Res. Design, 83(A11), 1283 (2005).
F. Shakeel, S. Baboota, A. Ahuja, J. Ali, M. Aqil, and S. Shafiq, Nanoemulsions as vehicles for transdermal delivery of aceclofenac, AAPS Pharm. Sci. Tech., 8(4), 104 (2007).
K. Watanabe, A. Noda, M. Masuda, and K. Nakamura, Bicontinuous microemulsion type cleansing containing silicone oil, I, J. Oleo. Sci., 53(11), 537 (2004).
K. Watanabe, A. Noda, M. Masuda, T. Kimura, K. Komatsu, and K. Nakamura, Bicontinuous microemulsion type cleansing containing silicone oil. II, J. Oleo. Sci., 53(11), 547 (2004).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.