$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Nanotechnology is the applied science which develops new materials and systems sized within 1 to 100 nanometer, and improves their physical, chemical, and biological characteristics by manipulating on an atomic and molecular scale. This nanotechnology has been applied to wide spectrum of industries resulting in production of various nanoparticles. It is expected that more nanoparticles will be generated and enter to natural water bodies, imposing great threat to potable water resources. However their toxicity and treatment options have not been throughly investigated, despite the significant growth of nanotechnology-based industries. The objective of this study is to provide fundamental information for the management of nanoparticles in water supply systems through extensive literature survey. More specifically, two types of nanoparticles are selected to be a potential problem for drinking water treatment. They are carbon nanoparticles such as carbon nanotube and fullerene, and metal nanoparticles including silver, gold, silica and titanium oxide. In this study, basic characteristics and toxicity of these nanoparticles were first investigated systematically. Their monitoring techniques and treatment efficiencies in conventional water treatment plants were also studied to examine our capability to mitigate the risk associated with nanoparticles. This study suggests that the technologies monitoring nanopartilces need to be greatly improved in water supply systems, and more advanced water treatment processes should be adopted for better control of these nanoparticles.

참고문헌 (70)

  1. 1. 과학기술부(2005) 나노기술영향평가 
  2. 2. 과학기술부(2008) 나노기술개발촉진법 
  3. 3. 국가과학기술위원회(2005) 제2기나노기술종합발전계획 
  4. 4. 제43회 종합과학기술회의(2006) 나노기술재료관련예산 
  5. 5. 제53회 종합과학기술회의(2005) 나노기술재료관련예산 
  6. 6. 지식경제부(2005) 나노기술종합발전계획 
  7. 7. 한국과학기술평가원(2005) 나노기술영향평가보고서 
  8. 8. 한국과학기술정보연구원(2006) 나노과학기술용어 
  9. 9. 한국과학기술정보연구원(2007) 나노기술연감 
  10. 10. 한국과학기술정보연구원(2007) 나노산업화동향 
  11. 11. 한국과학기술정보연구원(2007) 세계나노기술정책동향 
  12. 12. Asharani, P. V., Y. L. Wu, Z. Y. Gona, S. Valiyaveettil (2008) Toxicity of Silver Nanoparticles in Zebrafish Models, Nanotechnology, 19, pp.255102. 
  13. 13. Benn, T. and Westerhoff, P. (2008) Nanoparticle Silver released into water from commercially available sock fabrics, Environmental Science and Technology, 42, 11, pp. 4133-4139. 
  14. 14. Bottini, M., S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi, T. Mustelin (2006) Multi-walled Carbon Nanotubes Induce T Lymphocyte Apoptosis, Toxicol. Lett., 160, pp.121-126. 
  15. 15. Chen, Z., H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye, F. Zhao, Z. Chai, C. Zhu, X. Fang, B. Ma, L. Wan (2006) Acute Toxicological Effects of Copper Nanoparticles in vivo, Toxicol. Lett., 163, pp.109-120. 
  16. 16. Chithrani, B. D., A. A. Ghazani, W. C. W. Chan (2006) Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Lett., 6, pp.662-668. 
  17. 17. Choi, O., Z. Hu (2008) Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria, Environ. Sci. Tech., 42, pp.4583-4588. 
  18. 18. Christie M. Sayes, Feng Liang, Jared L. Hudson, Joe Mendez, Wenhua Guo, Jonathan M. Beach, Valerie C. Moore, Condell D. Doyle, Jennifer L. West, W. Edward Billups, Kevin D. Ausman, Vicki L. Colvin (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro, Toxicology Letters, 161, 2, pp.135-142. 
  19. 19. Christie M. Sayes., Andre M. Gobin., Kevin D. Ausman., Joe Mendez., Jennifer L. West., Vicki L. Colvin (2005) Nano-C60 cytotoxicity is due to lipid peroxidation, Biomaterials, 26, 36, pp.7587-7595. 
  20. 20. Connor, E., J. Mwamuka, A. Gole, C. Murphy, M. Wyatt (2005) Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity, Small, 1, pp.325-327. 
  21. 21. Craig A. Poland., Rodger Duffin., Ian Kinloch., Andrew Maynard., William A. H. Wallace., Anthony Seaton., Vicki Stone., Simon Brown., William MacNee., Ken Donaldson (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nature Nanotechnology, 3, pp.423-428. 
  22. 22. Daxiang Cui, Furong Tian, Cengiz S. Ozkan, Mao Wang, Huajian Gao (2005) Effect of single wall carbon nanotubes on human HEK293 cells, Toxicology Letters, 155, 1, pp.73-85. 
  23. 23. Fischer, H. C., L. C. Liu, K. S. Pang, W. C. W. Chan (2006) Pharmacokinetics of Nanoscale Quantum Dots: In Vivo Distribution, Sequestration, and Clearance in the Rat, Adv. Funct. Mater., 16, pp.1299-1305. 
  24. 24. Gao, X., Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie. (2004) In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 22, pp.969-976. 
  25. 25. Gianni Ciofani, Serena Danti, Delfo D'Alessandro, Stefania Moscato, Arianna Menciassi (2010) Assessing cytotoxicity of boron nitride nanotubes: Interference with the MTT assay, Biochemical and Biophysical Research Communications, 394, 2, pp.405-411. 
  26. 26. Goodman, C., C. McCusker, T. Yilmaz, V. Rotello (2004) Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains, Bioconjugate. Chem., 15, pp.897-900. 
  27. 27. Hohr, D., Steinfartz Y., Schins R. P., Knaapen A. M., Martra G., Fubini B., Borm P. (2002) The Surface Area rather than the Surface Coating Determines the Acute Inflammatory Response after Instillation of Fine and Ultrafine $ $TiO_{2}$ $ in the rat, Int. J. Hyg. Environ. Health, 205. pp.239-244. 
  28. 28. Hyung H., Kim JH. (2008) Natural organic matter absorption to multi-walled carbon nano tubes: effect of NOM characteristics and water quality parameter, Environ. Sci. and Technol., 42, pp.4416-4421. 
  29. 29. Hyung, H; Kim, J. H. (2009) Dispersion of $ $C_{60}$ $ in natural water and removal by conventional drinking water treatment processes, Water Research, 43, pp.2463-2470. 
  30. 30. Jia yu Wang., Tokuyuki Teraji., Toshimichi Ito (2005) Fabrication of wrinkled carbon nano-films with excellent field emission characteristics, Diamond and Related Materials, 14, 11-12, pp.2074-2077. 
  31. 31. Jill R. Pan, Chihpin Huang, W. Jiang, Chiahsin Chen (2005) Treatment of wastewater containing nano-scale silica particles by dead-end microfiltration: evaluation of pretreatment methods, Desalination, 179, 1-3, pp.31-40. 
  32. 32. Jin, Y. H., S. Kannan, M. Wu, J. X. J. Zhao. (2007) Toxicity of Luminescent Silica Nanoparticles to Living Cells, Chem. Res. Toxicol., 20, pp.1126-1133. 
  33. 33. John D. Fortner, Doo-Il Kim, Adina M. Boyd, Joshua C. Falkner, Sean Moran, Vicki L. Colvin, Joseph B. Hughes, and Jae-Hong Kim (2007) Reaction of Water-Stable C60 Aggregates with Ozone, Environ. Sci. Technol., 41(21), pp. 7497-7502. 
  34. 34. Kang, S., M. Herzberg, D. F. Rodrigues, M. Elimelech (2008) Antibacterial Effects of Carbon Nanotubes: Size Does Matter, Langmuir, 24, pp.6409-6413. 
  35. 35. Kiril Hristovski, Paul Westerhoff, John Crittenden (2008) An approach for evaluating nanomaterials for use as packed bed adsorber media: A case study of arsenate removal by titanate nanofibers, Journal of Hazardous Materials, 156, 1-3, pp.604-611. 
  36. 36. Larisa Belyanskaya, Pius Manser, Philipp Spohn, Arie Bruinink, Peter Wick (2007) The reliability and limits of the MTT reduction assay for carbon nanotubes-cell interaction, Carbon, 45, 13, pp.2643-2648. 
  37. 37. Lee, J., Y. Mackeyev, M. Cho, D. Li, J.-H. Kim, L. J. Wilson, P. J. J. Alvarez (2009) Photochemical and Antimicrobial Properties of Novel C60 Derivatives in Aqueous Systems, Environ. Sci. Technol., 43(17), pp.6604-6610. 
  38. 38. Lee, K. J., P. D. Nallathamby, L. M. Browning, C. J. Osgood, X. H. N. Xu. (2007) In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos, ACS Nano, 1, pp.133-143. 
  39. 39. Leshuai W. Zhang, Jianzhong Yang, Andrew R. Barron, Nancy A. Monteiro-Riviere (2009) Endocytic mechanisms and toxicity of a functionalized fullerene in human cells, Toxicology Letters, 191, 2-3, pp.149-157. 
  40. 40. Lyon, D. Y., P. J. J. Alvarez (2008) Fullerene Water Suspension ( $nC_{60}$ ) Exerts Antibacterial Effects Via ROS-Independent Protein Oxidation, Environ. Sci. Technol., 42, pp.8127-8132. 
  41. 41. M. C. Roco (2001) International Strategy for nano-technology research and development, Journal of nanoparticle Research, 3, 5-6, pp.353-360. 
  42. 42. Mark R. Wiesner, Greg V. Lowry, Pedro Alvarez. (2006) Assessing the Risks of Manufactured Nanomaterials, Environ. Sci. Technol., 40, 14, pp 4336-4345. 
  43. 43. Marquis, B. J., S. A. Love, K. L. Braun, C. L. Haynes. (2009) Analytical Methods to Assess Nanoparticle Toxicity, Analyst, 134, pp.425-439. 
  44. 44. Meghan E. Samberg, Steven J. Oldenburg, Nancy A. Monteiro-Riviere (2010) Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro, Environmental Health Perspectives, 118, 3, pp.407-413. 
  45. 45. Mingfei Zhao, Zhaobin Tang, Peng Liu (2008) Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite, Journal of Hazardous Materials, 158, 1, pp.43-51. 
  46. 46. Monterio-Riviere, N., A. Inman (2006) Challenges for Assessing Carbon Nanomaterial Toxicity to the Skin, Carbon, 44, pp.1070-1078. 
  47. 47. Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, M. J. Yacaman (2005) The Bactericidal Effect of Silver Nanoparticles, Nanotech., 16, pp.2345-2353. 
  48. 48. Nadine Wong Shi Kam, Hongjie Dai (2005) Carbon Nanotubes as Intracellular Protein Transporters: Generality and Biological Functionality, J. AM. CHEM. SOC., 127, pp.6021-6026. 
  49. 49. Bondarenko O., A. Ivask, N. Jepihhina, A. Kahru (2010) Profiling of oxidative damage potential of CuO, ZnO and Ag nanoparticles using recombinant luminescent bacterial sensors and superoxide dismutase defective strains, Toxicology Letters, 196, 1, pp.274. 
  50. 50. Oberdorster, G, Ferin J, Lehnert B. E. (1994) Correlation Between Particle Size, in vivo Particle Persistence, and Lung Injury, Environ. Health. Perspect, 102, pp.173-179. 
  51. 51. Pan, Y., S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, W. Jahnen-Dechent. (2007) Size-Dependent Cytotoxicity of Gold Nanoparticles, Small, 3, pp.1941-1949. 
  52. 52. Porter, A. E., M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, M. Welland (2007) Nat. Nanotechnol., 2, pp.713-717. 
  53. 53. Arora, S., J. Jain, J.M. Rajwade, K.M. Paknikar (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells Original Research Article, Toxicology and Applied Pharmacology, 236, 3, pp.310-318. 
  54. 54. Fiorito, S., A. Serafino., F. Andreola., P. Bernier (2006) Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages, Carbon, 44, 6, pp.1100-1105. 
  55. 55. Hussain, S.M., K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicology in Vitro, 19, 7, pp.975-983. 
  56. 56. Sato, Y. Sato, A. Yokoyama, K. Shibata, Y. Akimoto, S. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari, K. Tohji (2005) Influence of Length on Cytotoxicity of Multi-Walled Carbon Nanotubes against Human Acute Monocytic Leukemia Cell Line THP-1 in vitro and Subcutaneous Tissue of Rats in vivo, Mol. Biosyst. 1, pp.176-182. 
  57. 57. Shenoy, D., W. Fu, J. Li, C. Crasto, G. Jones, C. Dimarzio, S. Sridhar, M. Amiji (2006) Surface Functionalization of Gold Nanoparticles Using Hetero-Bifunctional Poly(Ethylene Glycol) Spacer for Intracellular Tracking and Delivery, Int. J. Nanomed. 1, pp.51-57. 
  58. 58. Shukla, R., V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry (2005) Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview, Langmuir, 21, pp.10644-10654. 
  59. 59. Shvedova, A., V. Castranova, E. Kisin, D. Schwegler-Berry, A. Murray, V. Gandelsman, A. Maynard, P. Baron (2003) Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human Keratinocyte Cells, J. Toxic ol. Environ. Health Part A. 66, pp.1909-1926. 
  60. 60. Sondi, I., B. S. Sondi (2004) Silver Nanoparticles as Antimicrobial Agent : A Case Study on E.coli as a Model for Gram-Negative Bacteria, J. Coll. Interface Sci., 275, pp.177-182. 
  61. 61. Steven D. Perrault and Warren C. W. Chan. (2010) In vivo assembly of nanoparticle components to improve targeted cancer imaging, PNAS., 107, 25, pp.11194-11199. 
  62. 62. T. Coccini, E. Roda, D.A. Sarigiannis, P. Mustarelli, E. Quartarone, A. Profumo, L. Manzo (2010) Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells, Toxicology, 269, 1, pp.41-53. 
  63. 63. Tian, F. R., D. X. Cui, H. Schwarz, G. G. Estrada, H. Kobayashi (2006) Cytotoxicity of Single-Wall Carbon Nanotubes on Human Fibroblasts, Toxicol. InVitro, 20, pp.1202-1212. 
  64. 64. Tkachenko, A., H. Xie, D. Coleman, W. Glomm, J. Ryan, M. Anderson, S. Franzen, D. Feldheim (2003) Multifunctional Gold Nanoparticle-Peptide Complexes for Nuclear Targeting, J. Am. Chem. Soc., 125, pp.4700-4701. 
  65. 65. Tom J. Battin, Frank v.d. Kammer, Andreas Weilhartner, Stephanie Ottofuelling, Thilo Hofmann (2009) Nanostructured TiO2: Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions, Environ. Sci. Technol., 43(21), pp.8098-8104. 
  66. 66. U.S EPA(2007) Nanotechnology white paper 
  67. 67. Wick, P., P. Manser, L. Limbach, U. Dettlaff-Weglikowska, F. Krumeich, S. Roth, W. Stark, A. Bruinink (2007) The Degree and Kind of Agglomeration Affect Carbon Nanotube Cytotoxicity, Toxicol. Lett., 168, 121-131. 
  68. 68. Won Hyuk Suh, Kenneth S. Suslick, Galen D. Stucky, Yoo-Hun Suh (2009) Nanotechnology, nanotoxicology, and neuroscience Review Article, Progress in Neurobiology, 87, 3, pp.133-170. 
  69. 69. Yang Zhang, Yongsheng Chen, Paul Westerhoff, Kiril Hristovski, John C Crittenden (2008) Stability of commercial metal oxide nanoparticles in water, Water Research, 42, 8-9, pp.2204-2212. 
  70. 70. Zhang, C., B. Wangler, B. Morgenstern, H. Zentgraf, M. Eisenhut, H. Untenecker, R. Kruger, R. Huss, C. Seliger, W. Semmler, F. Kiessling. (2007) Silica and Alkoxysilane Coated Ultrasmall Superparamagnetic Iron Oxide Particles: A Promising Tool To Label Cells for Magnetic Resonance Imaging, Langmuir, 23, pp.1427-1434. 

DOI 인용 스타일

"" 핵심어 질의응답