$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Identification of Mating Type Loci and Development of SCAR Marker Genetically Linked to the B3 Locus in Pleurotus eryngii 원문보기

Journal of microbiology and biotechnology, v.22 no.9, 2012년, pp.1177 - 1184  

Ryu, Jae-San (Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services) ,  Kim, Min Keun (Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services) ,  Ro, Hyeon-Su (Department of Microbiology and Research Institute for Life Science, Gyeongsang National Univesity) ,  Kang, Young Min (Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services) ,  Kwon, Jin-Hyeuk (Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services) ,  Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ,  Lee, Hyun-Sook (Department of Microbiology and Research Institute for Life Science, Gyeongsang National Univesity)

Abstract AI-Helper 아이콘AI-Helper

In order to estimate how diverse the mating types in Pleurotus eryngii from different regions are, pairings between monokaryons derived from inter- and intra-groups were done. Sixteen and 15 alleles were identified at loci A and B from the 12 strains. In the P. eryngii KNR2312, widely used for comme...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Amplification was done using SCAR (13-22100 F and R) primers with the monokaryons derived from KNR2523, KNR2525, KNR2501, and KNR2522. Two monokaryons were selected from each mating type.
  • To verify why RAPD primer (OPS-13) occasionally did not work or amplified smear bands upon strains containing AxB3 and was likely caused by a mismatch on the sequences of the genome and the primer, the technique of genome walking was performed. Based on the sequence of the 13-2 fragment, upstream primers (RGSP1, GGTCAGTTCA ACCAATCCAG TATCTT for primary PCR; and RGSP2, GTGAACGCTA CAATCTGGTC TGATAAT for nested PCR) and downstream primers (LGSP1, GTCGCCAACC CTGTCGCCCC TTGGATCAGC for primary PCR; and LGSP2, ATCCCTCTCT CCATCTTTAT CATCTG for nested PCR) were designed to extend the gene sequence using a Universal GenomeWalker kit (CloneTech, Mountain View, CA, USA).
  • Developed primer sequences for the B3 locus were 13-22100-F: 5'- CAAAGGTCCCCCCGATAGTGAT-3'; and 13-22100-R: 5'-CAGAGG TCCCAGCTGGAAGTGT-3' (SCAR marker primers were the registered Korean patent, #100993814). In order to optimize PCR conditions for the SCAR marker, annealing temperature was tested at a range of 37 to 67oC and a number of reaction cycles. To verify the marker’s reproducibility and reliability upon different concentrations of template DNA and Taq DNA polymerases, PCR reaction was performed with 10, 30, 100, and 300 ng/µl of genomic DNA as a template and several Taq DNA polymerases including Go-Taq (Promega, USA), Accupower PCR Premix (Bioneer, Korea), and Super-therm (Southern Cross Biotech, South Africa).
  • The results of sequencing were used to design more reliable primers for identifying mating type in the monokaryotic offspring derived from KNR2312 and other strains. The SCAR primer was manually designed using the sequence of 13-2 and flanked region.
  • To determine and assign mating types of the monokaryotic sibling from the strains, 20 monokaryons were selected randomly and all possible combinations crossed, sorted, and grouped based on the morphological characters including true clamp connection, pseudo-clamp connection, and flat form. The 3-4 isolates identified were selected from each mating type group in all strains crossed inter-specifically.
  • To verify the marker’s reproducibility and reliability upon different concentrations of template DNA and Taq DNA polymerases, PCR reaction was performed with 10, 30, 100, and 300 ng/µl of genomic DNA as a template and several Taq DNA polymerases including Go-Taq (Promega, USA), Accupower PCR Premix (Bioneer, Korea), and Super-therm (Southern Cross Biotech, South Africa).

대상 데이터

  • 3. DNA fragments obtained in a set of monokaryons derived from P. eryngii KNR2312 using the SCAR (13-22100 F and R) as primers.
  • For evaluation of the SCAR marker’s applicability to other strains, monokaryons derived from KNR2501, KNR2514, KNR2519, KNR2522, KNR2523, and KNR2525 were tested.
  • The SCAR marker saved time by 13 days over the conventional method (taking 15 days) to identify the mating types. Over 150 monokaryotic isolates from various P. eryngii strains including KNR2312, KNR2514, KNR2522, and KNR2523 were tested with 13-22100 primers, and every monokaryon containing B3 showed the specific band. No recombination was observed between the marker and the phenotype (mating type).
  • eryngii KNR2312. Specific PCR products ranged from 450-2,500 bp, linked to all cases of mating type, A3B3, A4B3, A3B4, and A4B4 were screened (data not shown). All of them were cloned, sequenced, and analyzed.
  • Recombinant plasmid was conducted into host JM109 cells by transformation according to the supplier’s protocol. The clones possessing mating type specific region were sequenced by an ABI 377 sequencer with the M13 universal primer (Genotech, Korea). In case the length of cloned DNA was over 1,500 bp, an additional primer for sequencing was designed based on the previously sequenced region by the Bioneer primer software (Bioneer, Korea).
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Anderson, N. A., G. R. Furneir, A. S. Wang, and J. W. Schwandt. 1991. The number and distribution of incompatibility factors in natural populations of Pleurotus ostreatus and Pleurotus sapidus. Can. J. Bot. 69: 2187-2191. 

  2. Casselton, L. A. and U. Kues. 1994. Mating type genes in Homobasidiomycetes, pp. 213-229. In: Developmental Biology of Higher Fungi. Cambridge University Press, Cambridge. 

  3. Eugenio, C. P. and N. A. Anderson. 1968. The genetics and cultivation of Pleurotus ostreatus. Mycologia 60: 627-634. 

  4. Giasson, L., C. A. Specht, C. Milgrim, C. P. Novotny, and R. C. Ullrich. 1989. Cloning and comparison of $A{\alpha}$ mating type alleles of the basidiomycete Schizophyllum commune. Mol. Gen. Genet. 218: 72-77. 

  5. Gioia, D. T., D. Sisto, G. L. Rana, and G. Figliuolo. 2005. Genetic structure of the Pleurotus eryngii species-complex. Mycol. Res. 109: 71-80. 

  6. Hagen, D. C., G. McCaffrey, and G. Sprague. 1986. Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: Gene sequence and implications for the structure of the presumed receptor. Proc. Natl. Acad. Sci. USA 83: 1418-1422. 

  7. Halsall, J. R., M. J. Lilner, and L. A. Casselton. 2000. Three subfamilies of pheromone and receptor genes generate multiple B mating specificities in the mushroom Coprinus cinereus. Genetics 154: 1115-1123. 

  8. Hilber, O. 1982. Die gattung Pleurotus (Fr) Kummer unter besonderer Berucksichtigung des Pleurotus eryngii-Formenkomplexes. Bibl. Mycol. 87: 1-448. 

  9. James, T. T., S. R. Liou, and R. Vilgalys. 2004. The genetic structure and diversity of the A and B mating type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet. Biol. 41: 813-825. 

  10. Judelson, H. S., L. J. Spielman, and R. Shattock. 1995. Mapping non-Mendelian segregation of mating type loci in the Oomycete, Phytophthora infestans. Genetics 141: 503-512. 

  11. Larraya, L. M., M. M. Penas, G. Perez, C. Santos, E. Ritter, A. G. Pisabarro, and L. Ramirez. 1999. Identification of incompatibility alleles and characterization of molecular markers genetically linked to the A incompatibility locus in the white rot fungus Pleurotus ostreatus. Curr. Genet. 34: 486-493. 

  12. Larraya, L. M., G. Perez, I. Iribarren, J. A. Blanco, M. Alfonso, A. G. Pisabarro, and L. Ramirez. 2001. Relationship between monokaryotic growth rate and mating type in the edible basidiomycete Pleurotus ostreatus. Appl. Environ. Microbiol. 67: 3385-3390. 

  13. Lewinsohn, D., E. Nevo, S. P. Wsser, Y. Hadar, and A. Beharav. 2001. Genetic diversity in populations of the Pleurotus erygii complex in Israel. Mycol. Res. 105: 941-951. 

  14. Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2: 323-327. 

  15. Michelmore, R. W., I. Paran, and R. V. Kessel. 1991. Identification of marker linked to disease-resistance genes by bulked segregation analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828-9832. 

  16. Parag, Y. and Y. Koltin. 1971. The structure of the incompatibility factors of Schizophyllum commune: Constitution of the three classes of B factors. Mol. Gen. Genet. 112: 43-48. 

  17. Paran, I. and R. W. Michelmore. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85: 985-993. 

  18. Raper, J. R. 1966. Genetics of Sexuality in Higher Fungi. Roland Press, New York. 

  19. Ro, H. S., S. S. Kim, J. S. Ryu, C. O. Jeon, T. S. Lee, and H. S. Lee. 2007. Comparative studies on the diversity of the edible mushroom Pleurotus eryngii: ITS sequence analysis, RAPD fingerprinting, and physiological characteristics. Mycol. Res. 111: 710-715. 

  20. Ryu, J. S., M. K. Kim, J. H. Kwon, S. H. Cho, N. K. Kim, C. W. Lee, et al. 2007. The growth characteristics of Pleurotus eryngii. Korean J. Mycol. 35: 47-53. 

  21. Theochari, I. and A. Nikolaou. 2000. Distribution of the mating type alleles in a Greek population of Pleurotus ostreatus, pp. 157-163. In L. J. L. D. Van Griensven (ed.). Science and Cultivation of Edible Fungi. Balkema, Rotterdam. 

  22. Urbanelli, S., V. D. Rosa, C. Fanelli, A. A. Fabbri, and M. Reverberi. 2003. Genetic diversity and population structure of the Italian fungi belonging to the taxa Pleurotus eryngii (DC.:Fr) Quel and P. feruae (DC.:Fr.) Quel. Heredity 90: 253-259. 

  23. Wallace, M. M. and S. F. Covert. 2000. Molecular mating type assay for Fusarium circinatum. Appl. Environ. Microbiol. 66: 5506-5508. 

  24. William, J. G. K., A .R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. 

  25. Zadrazil, F. 1978. Cultivation of Pleurotus, pp. 521-557. In S. T. Chang and W. A. Hayes (eds.). The Biology and Cultivation of Edible Mushrooms. Academic Press. San Francisco. London. 

  26. Zervakis, G. I., G. Venturella, and K. Papadopoulou. 2001. Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Microbiology 147: 3183-3194. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로