$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초임계유체 공정과 분리기술의 응용
Application of Separation Technology and Supercritical Fluids Process 원문보기

청정기술 = Clean technology, v.18 no.2 = no.57, 2012년, pp.123 - 143  

윤순도 (전남대학교 공학대학 생명화학공학부) ,  변헌수 (전남대학교 공학대학 생명화학공학부)

초록
AI-Helper 아이콘AI-Helper

초임계유체기술은 최근 다양한 화학 산업 분야에서 새로운 관심을 모으고 있는 신기술의 하나라 할 수 있다. 초임계유체기술은 높은 용해성, 빠른 침투성, 빠른 물질 이동 등의 초임계유체 장점을 이용한 기술로써 친환경, 에너지 절감, 고효율성을 가진 현재로서 가장 효과적이고 실용적인 기술이라 하겠다. 이러한 특징을 가진 초임계유체기술을 이용한 응용 기술의 잠재력을 분석 및 평가하고 개발하는 것은 필수적이다. 따라서 본 총설에서는 초임계유체기술의 응용 측면에서 초임계유체내에서 고분자 중합 공정의 최적화를 위한 기초자료인 모노머/고분자의 고온 고압에서 초임계유체 내에서의 상거동 현상을 설명하고, 이러한 자료를 통해 초임계유체 내에서 특정물질을 분리 할 수 있는 분자인식고분자의 제조와 성능 평가에 대해 소개하였다.

Abstract AI-Helper 아이콘AI-Helper

Supercritical fluid technology (SFT) is recently one of the most new techniques, which has been interested various fields of related chemical industries. SFT is the most effective and practical technology with eco-friendly, energy-savings, and high efficiency as the technique using the advantages of...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
초임계유체란? 초임계유체(Supercritical fluid; SCF)란 임계압력 및 입계온도 이상의 조건을 갖는 상태에 있는 물질로 정의되며, 일반적인 액체나 기체와는 다른 고유의 특성을 가진다. 초임계 상태의 물리적인 특성은 기체와 액체의 중간정도의 물성을 가지며, 상변화 없이도 약간의 압력, 온도 변화에 따라 물성을 변화시킬수 있으며, 표면장력이 없기 때문에 세공구조에도 쉽게 침투하고 확산력이 좋으며 물질전달 속도가 크다는 장점이 있다.
초임계유체기술 크게 어떻게 분류되는가? 초임계유체기술은 크게 분리기술(separation technology), 반응기술(reaction technology), 재료기술(materials technology)의 3가지로 분류되며 뿌리 부분에 공통핵심기술이 자리 잡고 있다 (Figure 2). 분리․정제기술은 추출(extraction), 세정(cleaning), 분획(fractionation), 건조(drying) 등이 포함되며, 반응기술에는 초임계유체가 반응용매 또는 반응물로서 사용된다.
초임계유체기술 중 분리, 정제기술에는 무엇이 포함되는가? 초임계유체기술은 크게 분리기술(separation technology), 반응기술(reaction technology), 재료기술(materials technology)의 3가지로 분류되며 뿌리 부분에 공통핵심기술이 자리 잡고 있다 (Figure 2). 분리․정제기술은 추출(extraction), 세정(cleaning), 분획(fractionation), 건조(drying) 등이 포함되며, 반응기술에는 초임계유체가 반응용매 또는 반응물로서 사용된다. 초임계수산화반응(supercritical water oxidation)에서는 물을 초임계상태로 하여 반응용매로서 사용하지만 초임계 가수반응(supercritical hydration) 또는 수화반응(supercritical hydrolysis)에서는 반응용매와 더불어 반응물로서 작용한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (69)

  1. Kirby, C. F., and McHugh, M. A., "Phase Behavior of Polymers in Supercritical Fluid Solvents," Chem. Rev., 99(2), 565- 602 (1999). 

  2. Dobbs, J. M., and Johnston, K. P., "Selectivities in Pure and Mixed Supercritical Fluid Solvents," Ind. Eng. Chem. Res., 26(7), 1476-1482 (1987). 

  3. Cooper, A. I., "Polymer Synthesis and Processing Using Supercritical Carbon Dioxide," J. Mater. Chem., 10(2), 207-234 (2000). 

  4. Tomasko, D. L., Li, H., Liu, D., Han, X., Wingert, M. J., and Lee, L., "A Review of $CO_2$ Applications in the Processing of Polymers," Ind. Eng. Chem. Res., 42(25) 6431-6456 (2003). 

  5. Alsoy, S., and Duda, J. L., "Processing of Polymers with Supercritical Fluids," Chem. Eng. & Technol., 22(11) 971-973 (1999). 

  6. Kendall, J. L., Canelas, D. A., Young, J. L., and DeSimone, J. M., "Polymerizations in Supercritical Carbon Dioxide," Chem. Rev., 99(2), 543-564 (1999). 

  7. Plunkett, R. J., "Tetrafluoroethylene Polymers," U.S. Patent No. 2,230,654 (1941). 

  8. Nishiwaki, K., and Katou, M., "Fluoric/acrylic Composite Polymer Particles," Colloids and Surf. A, 153(1-3), 317-320 (1999). 

  9. Ameduri, B., and Boutevin, B., "Use of Telechelic Fluorinated Diiodides to Obtain Well-defined Fluoropolymers," J. Fluorine Chem., 100(1-2) 97-116 (1999). 

  10. Mokhtar, S. M., Abd-Elaziz, S. M., and Gomaa, F. A., "Synthesis Characterizations and Properties of A New Fluoromaleimide Polymer," J. Fluorine Chem., 131(5) 616-620 (2010). 

  11. Xiang, Y., and Kiran, E., "Miscibility, Density and Viscosity of Poly (dimethylsiloxane) in Supercritical Carbon Dioxide," Polym., 36(25), 4817-4826 (1995). 

  12. Gregg, C. J., Stein, F. P., and Radosz, M., "Phase Behavior of Telechelic Polyisobutylene (PIB) in Subcritical and Supercritical Fluids. 1. Inter- and Intra-association Effects for Blank, Monohydroxy, and Dihydroxy PIB (1K) in Ethane, Propane, Dimethyl Ether, Carbon Dioxide, and Chlorodifluoromethane," Macromolecules, 27(18), 4972-4980 (1994). 

  13. Gregg, C. J., Stein, F. P., and Radosz, M., "Phase Behavior of Telechelic Polyisobutylene (PIB) in Subcritical and Supercritical Fluids. 2. PIB Size, Solvent Polarity, and Inter- and Intra-association Effects for Blank, Monohydroxy, and Dihydroxy PIB (11K) in Ethane, Propane, Carbon Dioxide, and Dimethyl Ether," Macromolecules, 27(18), 4981-4985 (1994). 

  14. Shiho, H., and DeSimone, J. M., "Dispersion Polymerization of Glycidyl Methacrylate in Supercritical Carbon Dioxide," Macromolecules, 34(5), 1198-1203 (2001). 

  15. Dardin, A., Cain, J. B., DeSimone, J. M., Johnson Jr., C. S., and Samulski, E. T., "High-pressure NMR of Polymers Dissolved in Supercritical Carbon Dioxide," Macromolecules, 30(12), 3593-3599 (1997). 

  16. Buback, M., and Droge, T., "High-pressure Free-radical Copolymerization of Ethene and Butyl Methacrylate," Macromol. Chem. Phys., 200(1), 256-264 (1999). 

  17. McHugh, M. A., Rindfleisch, F., Kuntz, P. T., Schmaltz, C., and Buback, M., "Cosolvent Effect of Alkyl Acrylates on the Phase Behaviour of Poly (alkyl acrylates)-Supercritical $CO_2$ mixtures," Polym., 39(24), 6049-6052 (1998). 

  18. McHugh, M. A., and Guckes, T. L., "Separating Polymer Solutions with Supercritical Fluids," Macromolecules, 18(4), 674-680 (1985). 

  19. Pan, C., and Radosz, M., "Phase Behavior of Poly(ethyleneco- hexene-1) Solutions in Isobutane and Propane," Ind. Eng. Chem. Res., 38(7), 2842-2848 (1999). 

  20. Kinzl, M., Luft, G., Adidharma, H., and Radosz, M., "SAFT Modeling of Inert-gas Effects on the Cloud-point Pressures in Ethylene Copolymerization Systems: Poly (ethylene-covinyl acetate) + Vinyl Acetate + Ethylene and Poly (ethyleneco- hexene-1) + Hexene-1 + Ethylene with Carbon Dioxide, Nitrogen, or n-Butane," Ind. Eng. Chem. Res., 39(2), 541-546 (2000). 

  21. Lora, M., and McHugh, M. A., "Phase Behavior and Modeling of the Poly(methyl methacrylate)- $CO_2$ -methyl Methacrylate System," Fluid Phase Equilibria, 157(2), 285-297 (1999). 

  22. Wolf, B. A., and Blaum, G., "Measured and Calculated Solubility of Polymers in Mixed Solvents: Monotony and Cosolvency," J. Polym. Sci. : Part B : Polym. Phys., 13(6), 1115-1132 (1975). 

  23. Wolf, B. A., and Blaum, G., "Pressure Influence on True Cosolvency. Measured and Calculated Solubility Limits of Polystyrene in Mixtures of Acetone and Diethylether," Makomol. Chem., 177(4), 1073-1088 (1976). 

  24. Rindfleisch, F., DiNoia, T. P., and McHugh, M. A., "Solubility of Polymers and Copolymers in Supercritical $CO_2$ ." J. Phys. Chem., 100, 15581-15587 (1996). 

  25. Kiran, E., and Gokmenoglu, Z., "High-pressure viscosity and density of polyethylene solutions in n-pentane," J. Appl. Polym. Sci., 58(12), 2307-2324 (1995). 

  26. Byun, H. S. Hasch, B. M. McHugh, M. A. Mahling, F. O. Busch, M., and Buback, M. "Poly (ethylene-co-butyl acrylate) Phase Behavior in Ethylene Compared to the Poly (ethyleneco- methyl acrylate)-ethylene System and Aspects of Copolymerization Kinetics at High Pressures," Macromolecules, 29 (5), 1625-1632 (1996). 

  27. Huang, S. H., and Radosz, M., "Equation of State for Small, Large, Polydisperse, and Associating Molecules," Ind. Eng. Chem. Res., 29(11), 2284-2294 (1990). 

  28. Huang, S. H., and Radosz, M. "Equation of State for Small, Large, Polydisperse, and Associating Molecules: Extension to Fluid Mixtures," Ind. Eng. Chem. Res., 30(8), 1994-2005 (1991). 

  29. Peng, D. Y., and Robinson, D. B., "A New Two-constant Equation of State," Ind. Eng. Chem. Fundam., 15(1), 59-64 (1976). 

  30. Wulff, G., "Molecular Imprinting in Cross-linked Materials with the Aid of Molecular Templates-A Way towards Artificial Antibodies," Angew. Chem. Int. Ed. Engl., 34(17), 1812-1832 (1995). 

  31. Mosbach, K., "Molecular Imprinting," Trends Biochem. Sci., 19(1), 9-14 (1994). 

  32. Shea, K. J., "Molecular Imprinting of Synthetic Network Polymers: the de novo Synthesis of Macromolecular Binding and Catalytic Sites." Trends Polym. Sci., 2, 166-173 (1994). 

  33. Polyakov, M. V., Kuleshina, L. P., and Neimark, I. E., "On the Dependence of Silica Gel Adsorption Properties on the Character of Its Porosity," Zhur. Fiz. Khim., 10, 100-112 (1937). 

  34. Dickey, F. H. "The Preparation of Specific Adsorbents," Proc. Natl. Acad. Sci., 35(5), 227-229 (1949). 

  35. Wulff, G., Sarhan, A., and Zabrocki, K., "Enzyme-analogue Built Polymers and Their Use for the Resolution of Racemates," Tetrahedron Lett., 14(44) 4329-4332 (1973). 

  36. Wulff, G., Vesper, W., Grobe-Einsler, R., and Sarhan, A. "Enzyme- analogue Built Polymers, 4. On the Synthesis of Polymers Containing Chiral Cavities and Their Use for the Resolution of Racemates," Makromol. Chem., 178(10), 2799- 2816 (1977). 

  37. Kempe, M., and Mosbach, K., "Separation of Amino Acids, Peptides and Proteins on Molecularly Imprinted Stationary Phases," J. Chromatogr. A, 691, 317-323 (1995). 

  38. Sreenivasan, K., and Sivakumar, R., "Interaction of Molecularly Imprinted Polymers with Creatinine," J. Appl. Polym. Sci., 66(13), 2539-2542 (1997). 

  39. Sreenivasan, K., "Synthesis and Evaluation of A Beta Cyclodextrin- based Molecularly Imprinted Copolymer," J. Appl. Polym. Sci., 70(1), 15-18 (1998). 

  40. Park, H. R., Yoon, S. D., Bang, E. Y., Rogers, K. R., and Chough, S. H., "Molecular Imprinting Polymers for the Separation of Toluic Acid Isomers," J. Appl. Polm.. Sci., 96, 650-654 (2005). 

  41. Park, H. R., Yoon, S. D., Lee, J. C., and Chough, S. H., "Separation of Hydroxybenzoic Acid Isomers Using the Molecular Imprinting Technique," J. Appl. Polm. Sci., 105(5), 2824-2829 (2007). 

  42. Davis, K., and Klibanov, A. M., "Molecular Imprinting of Proteins and Other Macromolecules Resulting in New Adsorbents," Biotechnol. Bioeng., 39, 176-185 (1992). 

  43. Haginaka, J., and Kagawa, C., "Uniformly Sized Molecularly Imprinted Polymer for d-Chlorpheniramine, Evaluation of Retention and Molecular Recognition Properties in An Aqueous Mobile Phase," J. Chromatogr. A., 948(1-2), 77-84 (2002). 

  44. Wang, H. Y., Xis, S. L., Sun, H., Liu, Y. K., Cao, S. K., and Kobayashi, T., "Molecularly Imprinted Copolymer Membranes Functionalized by Phase Inversion Imprinting for Uracil Recognition and Permselective Binding," J. Chromatogr. B., 804(1), 127-134 (2004). 

  45. Reddy, P. S., Kobayashi, T., Abe, M., and Fujii, N., "Molecular Imprinted Nylon-6 as A Recognition Material of Amino Acids," Europ. Polym. J., 38(3), 521-529 (2002). 

  46. Schweitz, L., Andersson, L. I., and Nilsson, S., "Capillary Electrochromatography with Predetermined Selectivity Obtained through Molecular Imprinting," Anal. Chem., 69(6), 1179-1183 (1997). 

  47. Piletsky, S. A., Dubei, I. Y., Fedroyak, D. M., and Kukhar, V. P., "Sustrate-selective Polymeric Membranes: Selective Transferof Nucleic Acid Components," Biopolym. Kletka, 6, 55- 58 (1990). 

  48. Green, R. J., Frazier, R. A., Shakesheff, K. M., Davies, M. C., Roberts, C. J., and Tendler, S. J. B., "Surface Plasmon Resonance Analysis of Dynamic Biological Interactions with Biomaterials," Biomaterials, 21, 1823-1835 (2000). 

  49. Piletsky, S. A., Panasyuk, T. L., Piletskaya, E. V., and Nicholls, I. A.,"Receptor and Transport Properties of Molecularly Imprinted Polymer Membranes-A Review," J. Memb. Sci., 157, 263-278 (1999). 

  50. McNiven, S., Yokobayashi, Y., Cheong, S. H., and Karube, I., "Enhancing the Selectivity of Molecularly Imprinted Polymers," Chem. Lett., 12, 1297-1298 (1997). 

  51. Gamez, P., Dunjic, B., Pinel, C., and Lemaire, M., "Molecular Imprinting Effect in the Synthesis of Immobilized Rhodium Complex Catalyst (IRC cat)," Tetra. Lett., 36, 8779-8783 (1995). 

  52. Araki, K., Maruyama, T., Kamiya, N., and Goto, M., "Metal ion-selective membrane prepared by surface molecular imprinting," J. Chromatogr. B, 818(2), 141-145 (2005). 

  53. Matsui, A. J., Takeuchi, T., Yano, K., Muguruma, H., Elgersma, A. V., and Karube, I., "Recognition of Sialic-acid Using Molecularly Imprinted Polymer," Anal. Lett., 28, 2317-2323 (1995). 

  54. Hilal, N., and Kochkodan, V. J., "Surface Modified Microfiltration Membranes with Molecularly Recognising Properties," J. Memb. Sci., 213, 97-113 (2003). 

  55. Sellegren, B., "Direct Drug Determination by Selective Sample Enrichment on An Imprinted Polymer," Anal. Chem., 66, 1578-1582 (1994). 

  56. Yoshikawa, M., and Izumi, J., "Chiral Recognition Sites Converted from Tetrapeptide Derivatives Adopting Racemates as Print Molecules," Macromol. Biosci., 3(9), 487-498 (2003). 

  57. Kobayashi, T., Wang, H. Y., and Fujii, N., "Molecular Imprinting of Theophylline in Acrylonitrile-acrylic Acid Copolymer Membrane," Chem. Lett., 24(10), 927-928 (1995). 

  58. Cheong, S. H., McNiven, S., Rachkov, A., Levi, R., K. "Testosterone Receptor-binding Mimic Constructed Using Molecular Imprinting," Macromol., 30(5), 1317-1322 (1997). 

  59. Levi, R., Mcniven, S., Piletsky, S. A., Cheong, S. H., Yano, K., and Karube, I., "Optical Detection of Chloramphenicol Using Molecularly Imprinted Polymers," Anal. Chem., 69(11), 2017-2021 (1997). 

  60. Svenson, J., and Nicholls, I. A., "On the Thermal and Chemical Stability of Molecularly Imprinted Polymers," Anal. Chem. Acta., 435(1), 19-24 (2001). 

  61. Duarte, A. R. C., Casimiro, T., Aguiar-Ricardo, A., Simplicio, A, L., and Duarte, C. M. M., "Supercritical Fluidpolymerisation and Impregnation of Molecularly Imprinted Polymers for Drug Delivery," J. Supercrit. Fluids., 39(1), 102-106 (2006). 

  62. Ye, L., Yoshimatsu, K., Kolodziej, D., Francisco, J. D. C., and Dey, E. S., "Preparation of Molecularly Imprinted Polymers Insupercritical Carbon Dioxide," J. Appl. Polym. Sci., 102, 2863-2867 (2006). 

  63. Kobayashi, T., Leong, S. S., and Zhang, Q., "Using Polystyreneco-maleic Acid for Molecularly Imprinted Membranes Prepared in Supercritical Carbon Dioxide," J. Appl. Polym. Sci., 108(2), 757-768 (2008). 

  64. Byun, H. S., and McHugh, M. A., "High Pressure Phase Behavior of Poly [isopropyl acrylate] and Poly[isopropyl methacrylate] in Supercritical Fluid (SCF) Solvent and SCF Solvent + Cosolvent Mixtures," J. Supercrit. Fluids, 41(3), 482- 491 (2007). 

  65. Liu, S., Lee, H. Y., Yoon, S. D., Yoo, K. P., and Byun, H. S., "High-pressure Phase Behavior for Poly (dodecyl methacrylate) + Supercritical Solvents + Cosolvents and Carbon Dioxide + Dodecyl Methacrylate Mixture," Ind. Chem. Eng. Res., 48(16), 7821-7827 (2009). 

  66. Jang, Y. S., Yoon, S. D., and Byun, H. S., "High Pressure Phase Behavior for the Binary Mixture of Pentafluoropropyl Methacrylate and Poly (pentafluoropropyl methacrylate) in Supercritical Carbon Dioxide and Dimethyl Ether," Kor. J. Chem. Eng., 29(3), 413-419 (2012). 

  67. Folie, B., Gregg, C., Luft, G., and Radosz, M., "Phase Equilibria of Poly (ethylene-co-vinyl acetate) Copolymers in Subcritical and Supercritical Ethylene and Ethylene-vinyl Acetate Mixtures," Fluid Phase Equilibria, 120(1), 11-37 (1996). 

  68. Byun, H. S., and Lee, D. H., "Phase Behavior of the Poly (neopentyl methacrylate) Plus Supercritical Fluid Solvents Plus Neopentyl Methacrylate System and $CO_2$ + Neopentyl Methacrylate Mixtures at High Pressure," Polym., 48(3), 805- 812 (2007). 

  69. Byun, H. S., Youn, Y. N., Yun, Y. H., and Yoon, S. D., "Selective Separation of Aspirin Using Molecularly Imprinted Polymers," Sep. Purif. Technol., 74(1), 144-153 (2010). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로