$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

아그로박테리움 동시 형질전환 시스템을 통한 항생제 선발 마커가 없는 형질전환벼의 생산
Generation of Transgenic Rice without Antibiotic Selection Marker through Agrobacterium-mediated Co-transformation System 원문보기

생명과학회지 = Journal of life science, v.22 no.9 = no.149, 2012년, pp.1152 - 1158  

박수권 (농촌진흥청 국립식량과학원 기능성작물부) ,  권택민 (농촌진흥청 국립식량과학원 기능성작물부) ,  이종희 (농촌진흥청 국립식량과학원 기능성작물부) ,  신동진 (농촌진흥청 국립식량과학원 기능성작물부) ,  황운하 (농촌진흥청 국립식량과학원 기능성작물부) ,  송유천 (농촌진흥청 국립식량과학원 기능성작물부) ,  조준현 (농촌진흥청 국립식량과학원 기능성작물부) ,  남민희 (농촌진흥청 국립식량과학원 기능성작물부) ,  전승호 (농촌진흥청 국립식량과학원 기능성작물부) ,  이상열 (경상대학교 대학원 응용생명과학부) ,  박동수 (농촌진흥청 국립식량과학원 기능성작물부)

초록
AI-Helper 아이콘AI-Helper

작물의 수확량이나 병 저항성을 증가시키는 형질전환 식물체 개발은 세계 식량 부족을 해결하는 좋은 방법이다. 하지만 항생제나 제초제의 사용은 형질전환 작물의 안전에 대해서 일반 사람들의 심각한 우려를 초래한다. 본 연구에서는, 아그로박테리움을 이용한 동시 형질전환 방법을 이용하여 한국의 밀 재배종인 '조경밀'의 유전자인, 고분자 글루테닌 서브유닛[high molecular-weight glutenin subunit (HMW-GS)] $D{\times}5$가 삽입된 마커프리 형질전환벼를 개발하였다. 각각 $D{\times}5$ 유전자와 하이그로마이신(HPTII) 저항성 유전자만으로 구성된 두 종류의 발현 카셋트(Two expression cassettes)를 독립적으로 아그로박테리움 EHA105에 도입하였고, $D{\times}5$와 HPTII가 도입된 각각의 EHA105 아그로박테리움을 3:1 비율로 혼합하여 벼 캘러스에 접종하였다. 66개의 HPTII 저항성 형질전환체 중에서 벼 게놈$D{\times}5$와 HPTII가 모두 삽입된 2개의 형질전환 라인을 획득하였다. $D{\times}5$와 HPTII가 벼 게놈에 도입된 것을 Southern blot을 통해서 다시 확인하였다. 또한, semi-quantitative RT-PCR을 통해 형질전환벼 $T_1$ 세대 종자의 밀 $D{\times}5$ 전사여부를 확인하였고 결국, $D{\times}5$ 유전자만을 가지는 마커프리 형질전환벼를 $T_1$ 세대에서 선발할 수 있었다. 본 연구 결과는 두 종류의 발현 카셋트를 사용한 아그로박테리움 동시 접종 시스템이 마커프리 형질전환벼를 생산하기 위한 효과적인 전략이 될 수 있음을 보여준다.

Abstract AI-Helper 아이콘AI-Helper

Development of transgenic plant increasing crop yield or disease resistance is good way to solve the world food shortage. However, the persistence of marker genes in crops leads to serious public concerns about the safety of transgenic crops. In the present paper, we developed marker-free transgenic...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Generation of marker-free transgenic plant is important way to solve the public concerns about the safety of antibiotics and herbicides [8]. In this paper, we used the Agrobacterium-mediated co-transformation method with two expression cassettes comprised of separate DNA fragments containing the Dx5 and HPTII resistance genes to produce transgenic rice plants free of herbicide and antibiotic resistance genes (Fig. 1). This method is one way to separate selectable marker genes from transgenes at the transformation stage.
  • For this strategy, three transformation approaches were developed: introduction of two T-DNAs in separate Agrobacterium strains, introduction of two T-DNA carried by different replicons within the same Agrobacterium strain, and introduction of two T-DNAs located on the same replicon within an Agrobacterium strain[8]. In this study, we modified the pCAMBIA1300 vector for introduction of target gene and generated the marker free transgenic rice through the co-transformation system with two Agrobacterium cells.
  • PCR was performed with the GeneAmp System 9700 (Applied Biosystems, Foster City, CA, USA) with a gene-specific primer set (Dx5; forward 5'-GGGACAATACGAGC AGCAAA-3', reverse 5'-CTTGTTCCGGTT GTTGCCAT-3', HPTII; forward 5'-CGCTTCTGCGGGCGATTT-3', reverse 5'-CCCATTCGGACCGCAAGGA-3') and EF Taq DNA polymerase (Solgent Co. Seoul, South Korea).
  • After klenow enzyme treatment for blunt ligation, the vector was self-ligated. Then, amplified the Dx5 gene with the EcoRI and KpnI restriction enzyme sites was constructed into modified pCAMBIA1300 binary vectors under the control of GluB1 promoter. The positive selectable marker cassette for co-transformation used an empty pCAMBIA1300 binary vector (Fig.
  • 3). To examine whether these two transformants were different, we analyzed the insertion position of the Dx5 gene in the two transformants by flanking T-DNA sequencing analysis. The Dx5 integration position of the line 2 was in chromosomes 2 and 8, the Dx5 integration position of the line 7 was in chromosomes 10 (data not shown).

이론/모형

  • Rice genomic DNA was prepared using the CTAB extraction method [19]. Aliquots of 5 μg of purified DNA were digested with restriction endonuclease (EcoRI), size-fractionated on a 0.
본문요약 정보가 도움이 되었나요?

참고문헌 (23)

  1. Ahmad, P., Ashraf, M., Younis, M., Hu, X., Kumar, A., Akram, N. A. and Al-Qurainy, F. 2012. Role of transgenic plants in agriculture and biopharming. Biotechnol. Adv. 30, 524-540. 

  2. An, G., Evert, P. R., Mitra, A. and Ha, S. B. 1988. Plant molecular biology manual 

  3. Chakraborti, D., Sarkar, A., Mondal, H. A., Schuermann, D., Hohn, B., Sarmah, B. K. and Das, S. 2008. Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect. Plant Cell Rep. 27, 1623-1633. 

  4. Chen, H., Nelson, R. S. and Sherwood, J. L. 1994. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. BioTechniques 16, 664-668, 670. 

  5. Cho, J. I., Ryoo, N., Ko, S., Lee, S. K., Lee, J., Jung, K. H., Lee, Y. H., Bhoo, S. H., Winderickx, J., An, G., Hahn, T. R. and Jeon, J. S. 2006. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta. 224, 598-611. 

  6. Chu, C. C., Wang, C. S., Sun, C. S., Hsu, C., Yin, K. C., Chu, C. Y. and Bi, F. Y. 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18, 659-668. 

  7. Cuellar, W., Gaudin, A., Solorzano, D., Casas, A., Nopo, L., Chudalayandi, P., Medrano, G., Kreuze, J. and Ghislain, M. 2006. Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol. Biol. 62, 71-82. 

  8. Darbani, B., Eimanifar, A., Stewart, C. N. Jr. and Camargo, W. N. 2007. Methods to produce marker-free transgenic plants. Biotechnol. J. 2, 83-90. 

  9. de Vetten, N., Wolters, A. M., Raemakers, K., van der Meer, I., ter Stege, R., Heeres, E., Heeres, P. and Visser, R. 2003. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nature Biotech. 21, 439-442 

  10. Gleave, A. P., Mitra, D. S., Mudge, S. R. and Morris, B. A. 1999. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol. 40, 223-235. 

  11. Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282. 

  12. Khan, R. S., Nakamura, I. and Mii, M. 2011. Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep. 30, 1041-1053. 

  13. Komari, T., Hiei, Y., Saito, Y., Murai, N. and Kumashiro, T. 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10, 165-174. 

  14. Kuiper, H. A., Kleter, G. A., Noteborn, H. P. and Kok, E. J. 2001. Assessment of the food safety issues related to genetically modified foods. Plant J. 27, 503-528. 

  15. Li, Z. and Trick, H. N. 2005. Rapid method for high-quality RNA isolation from seed endosperm containing high levels of starch. BioTechniques 38, 872, 874, 876. 

  16. McElroy, D., Zhang, W., Cao, J. and Wu, R. 1990. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2, 163-171. 

  17. Ramessar, K., Peremarti, A., Gomez-Galera, S., Naqvi, S., Moralejo, M., Munoz, P., Capell, T. and Christou, P. 2007. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res. 16, 261-280. 

  18. Roy, P., Orikasa, T., Okadome, H., Nakamura, N. and Shiina, T. 2011. Processing conditions, rice properties, health and environment. Int. J. Environ. Res. Public Health 8, 1957-1976. 

  19. Thompson, B. G., Anderson, R. and Murray, R. G. 1980. Unusual polar lipids of Micrococcus radiodurans strain Sark. Can. J. Microbiol. 26, 1408-1411. 

  20. Volkov, R. A., Panchuk, I. I. and SchoZ, F. 2003. Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J. Exp. Bot. 54, 2343-2349. 

  21. Wu, C. Y., Adach, T., Hatano, T., Washida, H., Suzukiand, A. and Takaiwa, F. 1998. Promoters of Rice Seed Storage Protein Genes Direct Endosperm-Specific Gene Expression in Transgenic Rice. Plant Cell Physiol. 39, 885-889. 

  22. Yan, Y., Hsam, S. L., Yu, J. Z., Jiang, Y., Ohtsuka, I. and Zeller, F. J. 2003. HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors. Theor. Appl. Genet. 107, 1321-1330. 

  23. Yang, L., Kajiura, H., Suzuki, K., Hirose, S., Fujiyama, K. and Takaiwa, F. 2008. Generation of a transgenic rice seed-based edible vaccine against house dust mite allergy. Biochem. Biophys. Res. Commun. 365, 334-339. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로