최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of Korea Water Resources Association = 한국수자원학회논문집, v.46 no.2, 2013년, pp.139 - 153
For analyzing shallow-water flows over the uneven bottom, the HLLL scheme and the divergence form for bed slope source term (DFB) technique, respectively were applied to the flux gradient and the bottom gradient source terms in a finite-volume model for the shallow water equations. And also the mode...
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
Riemann 해법은 누구의 제안으로 시작되었는가? | Riemann 해법은 1950년대 말 S. K. Godunov의 제안으로 시작되었으나, 그 자신이 증명한 바와 같이 수치해의 정확도가 높아야 1차인 한계로 이후 약 20년간 주목받지 못했다(van Leer, 2006). 공간에 대한 2차 정확도는 van Leer (1979)에 의해 달성되었으며, 이 기법은 MUSCL(Monotonic Upstream-centered Scheme for Conservation Laws)로 불린다. | |
천수 흐름을 해석하기 위해 무엇을 구성하였는가? | 고르지 않은 바닥을 지나는 천수 흐름을 해석하기 위해 천수방정식의 흐름률 경사항과 바닥 경사 생성항에 대해 HLLL 기법과 DFB(Divergence Form for Bed slope source term) 기법을 각각 적용하여 유한체적 모형을 구성하였다. 또한, PSC(Partially Submerged Cell)의 고려를 위해 VFR(Volume/Free-surface Relationship)도 이용하였다. | |
Riemann 해법이 경사면을 지나는 천수 흐름에 적용이 어려운 이유는? | Riemann 해법은 쌍곡선형 방정식에서 흐름률(flux)의 정확한 계산이 가능한 방법이므로 천수방정식과 같이 생성항이 있는 비제차(inhomogeneous) 방정식에 대해서는 단계분리방법(fractional step method)이 적절한 선택일수 있다(LeVeque, 2002). 그러나 경사면을 지나는 천수 흐름에 대해 이 방법은 정상 또는 준정상(quasi-steady) 상태에서 흐름률의 경사항과 바닥 경사에 의한 생성항의 선 평형성(well-balancedness)이 충족되기 어려운 것으로 알려져 있다(LeVeque, 1998). |
Aureli, F., Maranzoni, A., Mignosa, P., and Ziveri, C. (2008a). "A weighted surface-depth gradient method for the numerical integration of the 2D shallow water equations with topography." Advances in Water Resources, Vol. 31, pp. 962-974.
Aureli, F., Maranzoni, A., Mignosa, P., and Ziveri, C. (2008b). "Dam-break flows: acquisition of experimental data through an imaging technique and 2D numerical modeling." Journal of Hydraulic Engineering, Vol. 134, pp. 1089-1101.
Batten, P., Lambert, C., and Causon, D.M. (1996). "Positively conservative high-resolution convection schemes for unstructured elements." International Journal for Numerical Methods in Engineering, Vol. 39, pp. 1821-1838.
Begnudelli, L., and Sanders, B.F. (2006). "Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying." Journal of Hydraulic Engineering, Vol. 132, pp. 371-384.
Begnudelli, L., and Sanders, B.F. (2007). "Conservative wetting and drying methodology for quadrilateral grid finite-volume models." Journal of Hydraulic Engineering, Vol. 133, pp. 312-322.
Bermudez, A., and Vazquez, M.E. (1994). "Upwind methods for hyperbolic conservation laws with source terms." Computers & Fluids, Vol. 23, pp. 1049-1071.
Bradford, S.F., and Sanders, B.F. (2002). "Finite-volume model for shallow-water flooding of arbitrary topography." Journal of Hydraulic Engineering, Vol. 128, pp. 289-298.
Brufau, P., Garcia-Navarro, P., and Vazquez-Cendon, M.E. (2004). "Zero mass error using unsteady wetting- drying conditions in shallow flows over dry irregular topography." International Journal for Numerical Methods in Fluids, Vol. 45, pp. 1047-1082.
George, D.L. (2004). Numerical approximation of the nonlinear shallow water equations with topography and dry beds: a Godunov-type scheme. MS. thesis, University of Washington.
George, D.L. (2008). "Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation." Journal of Computational Physics, Vol. 227, pp. 3089-3113.
Goutal, N. (1997). "Test case 2: steady state validation." Proceedings of the 2nd workshop on dam-break wave simulation, Edited by Goutal, N., and Maurel, F., IAHR,Lisbon, Portugal, pp. 13-17.
Hubbard, M.E., and Garcia-Navarro, P. (2000). "Flux difference splitting and the balancing of source terms and flux gradients." Journal of Computational Physics, Vol. 165, pp. 89-125.
Hwang, S.-Y., and Lee, S.H. (2012). "An application of the HLLL approximate Riemann solver to the shallow water equations." Journal of Korea Society of Civil Engineers, Vol. 32, No. 1B, pp. 21-27(in Korean).
Kim, D.H., and Cho, Y.S. (2005). "An improved surface gradient method for the computation of hyperbolic- type shallow-water equations on irregular bathymetry." Journal of Korea Society of Civil Engineers, Vol. 25, No. 3B, pp. 223-229(in Korean).
Lee, K.S., and Lee, S.-T. (1988). "Two-dimensional finitevolume unsteady-flow model for shocks." Journal of Korea Water Resources Association, Vol. 31, pp. 279- 290(in Korean).
LeVeque, R.J. (1998). "Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm." Journal of Computational Physics, Vol. 146, pp. 346-365.
LeVeque, R.J. (2002). Finite volume method for hyperbolic problems. Cambridge University Press.
Maurel, F. (1997). "Test case 1: momentum equation source terms calculation-1D codes." Proceedings of the 2nd workshop on dam-break wave simulation, Edited by Goutal, N., and Maurel, F., IAHR, Lisbon, Portugal, pp. 2-5.
Pu, J.H., Cheng, N.-S., Tan, S.K., and Shao, S. (2012) "Source term treatment of SWEs using surface gradient upwind method." Journal of Hydraulic Research, Vol. 50, pp. 1-9.
Soares-Frazao, S. (2007). "Experiments of dam-break wave over a triangular bottom sill." Journal ofHydraulic Research, Vol. 45, pp. 19-26.
Toro, E.F. (2001). Shock-capturing methods for freesurface shallow flows. John Wiley & Sons.
Valiani, A., and Begnudelli, L. (2006). "Divergence form for bed slope source term in shallow water equations." Journal of Hydraulic Engineering, Vol. 132, pp. 652- 665.
Valiani, A., Caleffi, V., and Zanni, A. (2002). "Case study: Malpasset dam-break simulation using a two-dimensional finite volume method." Journal of Hydraulic Engineering, Vol. 128, pp. 460-472.
van Leer, B. (1979). "Towards the ultimate conservative difference scheme V. a second order sequel to Godunov's method." Journal of Computational Physics, Vol. 32, pp. 101-136.
van Leer, B. (2006). "Upwind and high-resolution method for compressible flow: from donor cell to residualdistribution schemes." Communications in Computational Physics, Vol. 1, pp. 192-206.
Vazquez-Cendon, M.E. (1999). "Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry." Journal of Computational Physics, Vol. 148, pp. 497-526.
Woo, H. (2001). River Hydraulics. Cheong Moon Gak Publishers(in Korean).
Zhou, J.G., Causon, D.M., Mingham, C.G., and Ingram, D.M. (2001). "The surface gradient method for the treatment of source terms in the shallow-water equations." Journal of Computational Physics, Vol. 168, pp. 1-25.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.