$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Creating Subnetworks from Transcriptomic Data on Central Nervous System Diseases Informed by a Massive Transcriptomic Network 원문보기

Interdisciplinary Bio Central, v.5 no.1, 2013년, pp.1.1 - 1.8  

Feng, Yaping (Development and Cell Biology, Department of Genetics, Iowa State University) ,  Syrkin-Nikolau, Judith A. (Macalester College) ,  Wurtele, Eve S. (Development and Cell Biology, Department of Genetics, Iowa State University)

Abstract AI-Helper 아이콘AI-Helper

High quality publicly-available transcriptomic data representing relationships in gene expression across a diverse set of biological conditions is used as a context network to explore transcriptomics of the CNS. The context network, 18367Hu-matrix, contains pairwise Pearson correlations for 22,215 h...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In one approach, the overall 18637Hu-matrix is used to identify additional CNS-expressed genes. In a second approach, we derive a network from within the CNS samples in the context of the larger matrix, and evaluated the overrepresentation of functional significance of regulons calculated from this network relative to that of the regulons derived from the 18637Hu-matrix.
  • The combined set of outlier-networks for glioblastomas and astrocytoma was evaluated to identify the abnormally expressed genes, and the associated samples, in the context of the 18637Hu-matrix. In this subnetwork, 48 gene clusters are naturally separated, with 23 gene pairs having 3 or more genes (Figure 4).
  • To compare the quality of the correlations in the smaller CNS dataset relative to the overall 18637Hudataset, we used the CNS dataset to calculated pairwise Pearson correlations from the > 22,000 transcripts measured.
  • Figure 2. Using the brain-specific Regulon 56 as a hub within the context of the 18367Hu-matrix correlation network to identify genes that are preferentially expressed in the CNS. The 18367Hu-matrix is comprised of the pairwise Pearson correlations for 22,215 human genes correlated across 18,637 human tissue samples1.

대상 데이터

  • The X-axis shows the data from individual microarray samples. The data is visualized and sorted by sample metadata using MOG (http://www.metnetdb.org/MetNet_MetaOmGraph.htm).

데이터처리

  • To delineate unique perturbations in gene expression within a particular disease condition, in this case glioblastomas or astrocytomas, we combined the 18637Hu-dataset network with data from the glioblastoma or astrocytoma samples to identify genes that are expressed to unusually high levels in only particular of the samples. To do this, the expression data from the 324 glioblastoma samples in the 18637Hu-dataset (Figure 1) were normalized by MAD and Mean100 and used to calculate pairwise Pearson correlations; the resultant matrices are referred to as Pcorr.Glio324.
  • Two selection criteria were used to identify genes that represent gliocytoma outliers. A set of Pearson correlation coefficients was determined for the subset of samples used in this analysis. Selection Criterion 1: PcorrGlio324 > 0.

이론/모형

  • The samples are further classified according to more details within the sample metadata. The sorting and visualization was conducted using the publicly available software, MetaOmGraph (MOG http://www.metnetdb.org/MetNet_MetaOm-Graph.htm).
본문요약 정보가 도움이 되었나요?

참고문헌 (16)

  1. Feng, Y., Hurst, J., Almeida-De-Macedo, M., Chen, X., Li, L., Ransom, N., and Wurtele, E. S. (2012). Massive human co-expression network and its medical applications. Chem Biodivers 9, 868-887. 

  2. Behrends, C., Sowa, M. E., Gygi, S. P., and Harper, J. W. (2010). Network organization of the human autophagy system. Nature 466, 68-76. 

  3. Mentzen, W. I., and Wurtele, E. S. (2008). Regulon organization of Arabidopsis. BMC Plant Biol 8, 99. 

  4. Tong, A. H., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G. F., Brost, R. L., Chang, M., et al. (2004). Global mapping of the yeast genetic interaction network. Science 303, 808-813. 

  5. Gieger, C., Radhakrishnan, A., Cvejic, A., Tang, W., Porcu, E., Pistis, G., Serbanovic-Canic, J., Elling, U., Goodall, A. H., Labrune, Y., et al. (2011). New gene functions in megakaryopoiesis and platelet formation. Nature 480, 201-208. 

  6. Li, L., Foster, C. M., Gan, Q., Nettleton, D., James, M. G., Myers, A. M., and Wurtele, E. S. (2009). Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. Plant J 58, 485-498. 

  7. Ngaki, M. N., Louie, G. V., Philippe, R. N., Manning, G., Pojer, F., Bowman, M. E., Li, L., Larsen, E., Wurtele, E. S., and Noel, J. P. (2012). Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature 485, 530-533. 

  8. Matthews, C. A., Shaw, J. E., Hooper, J. A., Young, I. G., Crouch, M. F., and Campbell, H. D. (2007). Expression and evolution of the mammalian brain gene Ttyh1. J Neurochem 100, 693-707. 

  9. Glait-Santar, C., and Benayahu, D. (2012). Regulation of SVEP1 gene expression by 17beta-estradiol and TNFalpha in pre-osteoblastic and mammary adenocarcinoma cells. J Steroid Biochem Mol Biol 130, 36-44. 

  10. D'Souza, R. D., and Vijayaraghavan, S. (2012). Nicotinic receptor-mediated filtering of mitral cell responses to olfactory nerve inputs involves the alpha3beta4 subtype. J Neurosci 32, 3261-3266. 

  11. Pakaski, M., and Kasa, P. (2003). Role of acetylcholinesterase inhibitors in the metabolism of amyloid precursor protein. Curr Drug Targets CNS Neurol Disord 2, 163-171. 

  12. Paterson, D., and Nordberg, A. (2000). Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61, 75-111. 

  13. Son, J. H., and Winzer-Serhan, U. H. (2009). Chronic neonatal nicotine exposure increases mRNA expression of neurotrophic factors in the postnatal rat hippocampus. Brain Res 1278, 1-14. 

  14. Silvera, S. A., Miller, A. B., and Rohan, T. E. (2006). Cigarette smoking and risk of glioma: a prospective cohort study. Int J Cancer 118, 1848-1851. 

  15. Rose, J. E., Behm, F. M., Drgon, T., Johnson, C., and Uhl, G. R. (2010). Personalized smoking cessation: interactions between nicotine dose, dependence and quit-success genotype score. Mol Med 16, 247-253. 

  16. Nikolau, B. J., and Wurtele, E. S. (2007). Concepts in Plant Metabolomics, Dordrecht: Springer. 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로